Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import torch | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import re | |
| from peft import PeftModel | |
| # Load the base model | |
| try: | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| "openai/gpt-oss-20b", | |
| torch_dtype="auto", | |
| device_map="auto", | |
| attn_implementation="kernels-community/vllm-flash-attention3" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") | |
| # Load the LoRA adapter | |
| try: | |
| model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner") | |
| print("✅ LoRA model loaded successfully!") | |
| except Exception as lora_error: | |
| print(f"⚠️ LoRA adapter failed to load: {lora_error}") | |
| print("🔄 Falling back to base model...") | |
| model = base_model | |
| except Exception as e: | |
| print(f"❌ Error loading model: {e}") | |
| raise e | |
| def format_conversation_history(chat_history): | |
| messages = [] | |
| for item in chat_history: | |
| role = item["role"] | |
| content = item["content"] | |
| if isinstance(content, list): | |
| content = content[0]["text"] if content and "text" in content[0] else str(content) | |
| messages.append({"role": role, "content": content}) | |
| return messages | |
| def create_harmony_prompt(messages, reasoning_level="medium"): | |
| """ | |
| Create a proper Harmony format prompt for GPT-OSS-20B | |
| Based on the Harmony format from https://github.com/openai/harmony | |
| """ | |
| # Start with system message in Harmony format | |
| system_content = f"""You are ChatGPT, a large language model trained by OpenAI. | |
| Knowledge cutoff: 2024-06 | |
| Current date: 2025-01-28 | |
| Reasoning: {reasoning_level} | |
| # Valid channels: analysis, commentary, final. Channel must be included for every message.""" | |
| # Build the prompt in Harmony format | |
| prompt_parts = [] | |
| # Add system message | |
| prompt_parts.append(f"<|start|>system<|message|>{system_content}<|end|>") | |
| # Add conversation messages | |
| for message in messages: | |
| role = message["role"] | |
| content = message["content"] | |
| if role == "system": | |
| # Skip system messages as we already added the main one | |
| continue | |
| elif role == "user": | |
| prompt_parts.append(f"<|start|>user<|message|>{content}<|end|>") | |
| elif role == "assistant": | |
| prompt_parts.append(f"<|start|>assistant<|message|>{content}<|end|>") | |
| # Add the generation prompt | |
| prompt_parts.append("<|start|>assistant") | |
| return "\n".join(prompt_parts) | |
| def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): | |
| new_message = {"role": "user", "content": input_data} | |
| system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] | |
| processed_history = format_conversation_history(chat_history) | |
| messages = system_message + processed_history + [new_message] | |
| # Extract reasoning level from system prompt | |
| reasoning_level = "medium" | |
| if "reasoning:" in system_prompt.lower(): | |
| if "high" in system_prompt.lower(): | |
| reasoning_level = "high" | |
| elif "low" in system_prompt.lower(): | |
| reasoning_level = "low" | |
| # Create Harmony format prompt | |
| prompt = create_harmony_prompt(messages, reasoning_level) | |
| # Create streamer for proper streaming | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| # Prepare generation kwargs | |
| generation_kwargs = { | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "pad_token_id": tokenizer.eos_token_id, | |
| "streamer": streamer, | |
| "use_cache": True | |
| } | |
| # Tokenize input using the Harmony format | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| # Start generation in a separate thread | |
| thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs}) | |
| thread.start() | |
| # Stream the response and parse Harmony format | |
| current_channel = None | |
| current_content = "" | |
| thinking = "" | |
| final = "" | |
| for chunk in streamer: | |
| current_content += chunk | |
| # Parse Harmony format channels | |
| # Look for channel markers like <|channel|>analysis, <|channel|>commentary, <|channel|>final | |
| if "<|channel|>" in current_content: | |
| # Extract channel and content | |
| parts = current_content.split("<|channel|>") | |
| if len(parts) >= 2: | |
| channel_part = parts[1] | |
| if channel_part.startswith("analysis"): | |
| current_channel = "analysis" | |
| content_start = channel_part.find("<|message|>") | |
| if content_start != -1: | |
| content = channel_part[content_start + 10:] # length of "<|message|>" | |
| thinking += content | |
| elif channel_part.startswith("commentary"): | |
| current_channel = "commentary" | |
| content_start = channel_part.find("<|message|>") | |
| if content_start != -1: | |
| content = channel_part[content_start + 10:] | |
| thinking += content | |
| elif channel_part.startswith("final"): | |
| current_channel = "final" | |
| content_start = channel_part.find("<|message|>") | |
| if content_start != -1: | |
| content = channel_part[content_start + 10:] | |
| final += content | |
| # Clean up the content for display | |
| clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip() | |
| clean_final = final.strip() | |
| # Format for display | |
| if clean_thinking or clean_final: | |
| formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}" | |
| yield formatted | |
| demo = gr.ChatInterface( | |
| fn=generate_response, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), | |
| gr.Textbox( | |
| label="System Prompt", | |
| value="You are a helpful assistant. Reasoning: medium", | |
| lines=4, | |
| placeholder="Change system prompt" | |
| ), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), | |
| gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), | |
| gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) | |
| ], | |
| examples=[ | |
| [{"text": "Explain Newton laws clearly and concisely"}], | |
| [{"text": "Write a Python function to calculate the Fibonacci sequence"}], | |
| [{"text": "What are the benefits of open weight AI models"}], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description=""" | |
| # 🙋🏻♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo ! | |
| Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high. | |
| This version uses the proper Harmony format for better generation quality. | |
| """, | |
| fill_height=True, | |
| textbox=gr.Textbox( | |
| label="Query Input", | |
| placeholder="Type your prompt" | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=False, | |
| theme=gr.themes.Soft() | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |