Anonumous commited on
Commit
535a496
·
1 Parent(s): 312797d

Update leaderboard

Browse files
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,53 +1,134 @@
 
 
1
  import logging
2
  import os
 
3
 
4
  os.makedirs("tmp", exist_ok=True)
5
  os.environ["TMP_DIR"] = "tmp"
6
- import subprocess
7
- import shutil
8
- import glob
9
- import gradio as gr
10
- import numpy as np
11
- from src.radial.radial import create_plot
12
- from apscheduler.schedulers.background import BackgroundScheduler
13
  from gradio_leaderboard import Leaderboard, SelectColumns
14
  from gradio_space_ci import enable_space_ci
15
- import json
16
- from io import BytesIO
17
 
 
 
 
 
 
 
18
 
19
- def handle_file_upload(file):
 
 
 
 
 
 
 
 
 
 
20
  file_path = file.name.split("/")[-1] if "/" in file.name else file.name
21
  logging.info("File uploaded: %s", file_path)
22
- with open(file.name, "r") as f:
23
  v = json.load(f)
24
  return v, file_path
25
 
26
 
27
- def submit_file(v, file_path, mn, profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  """
29
- Обрабатывает загрузку файлов с результатами пользовательских моделей
30
 
31
  Args:
32
- v: Загруженные д��нные результатов из JSON
33
- file_path: Путь к загруженному файлу
34
- mn: Имя модели, указанное пользователем
35
- profile: Профиль пользователя HuggingFace
36
 
37
  Returns:
38
- str: Сообщение об успехе или ошибке
39
  """
40
  if profile is None:
41
  return "Hub Login Required: Войдите в HuggingFace, чтобы загрузить результаты"
42
 
43
  try:
44
- # Проверяем наличие обязательных полей
45
  required_fields = ["score", "math_score", "physics_score"]
46
  for field in required_fields:
47
  if field not in v:
48
  return f"Error: Отсутствует обязательное поле '{field}' в JSON файле"
49
 
50
- # Создаем новый объект для сохранения в базе данных
51
  new_file = {
52
  "model_name": profile.username + "/" + mn,
53
  "score": float(v["score"]),
@@ -60,20 +141,20 @@ def submit_file(v, file_path, mn, profile: gr.OAuthProfile | None):
60
  ),
61
  }
62
 
63
- # Проверка значений на корректность
64
  if not (
65
  0 <= new_file["score"] <= 1 and 0 <= new_file["math_score"] <= 1 and 0 <= new_file["physics_score"] <= 1
66
  ):
67
  return "Error: Все значения оценок должны быть в диапазоне от 0 до 1"
68
 
69
- # Создаем уникальное имя файла на основе username и имени модели
70
  safe_filename = profile.username + "_" + mn.replace("/", "_").replace(" ", "_") + ".json"
71
 
72
- # Создаем JSON в памяти и загружаем его в репозиторий
73
  buf = BytesIO()
74
  buf.write(json.dumps(new_file, ensure_ascii=False).encode("utf-8"))
75
 
76
- # Загружаем файл в репозиторий
77
  API.upload_file(
78
  path_or_fileobj=buf,
79
  path_in_repo="model_data/external/" + safe_filename,
@@ -81,12 +162,11 @@ def submit_file(v, file_path, mn, profile: gr.OAuthProfile | None):
81
  repo_type="dataset",
82
  )
83
 
84
- # Устанавливаем флаг для обновления лидерборда
85
- os.environ[RESET_JUDGEMENT_ENV] = "1"
86
-
87
- # Логируем успешную загрузку
88
  logging.info(f"Successfully uploaded model results: {new_file['model_name']}")
89
 
 
 
 
90
  return f"Success! Результаты модели '{mn}' успешно отправлены в лидерборд DeathMath."
91
 
92
  except Exception as e:
@@ -94,45 +174,23 @@ def submit_file(v, file_path, mn, profile: gr.OAuthProfile | None):
94
  return f"Error: Произошла ошибка при отправке файла: {str(e)}"
95
 
96
 
97
- from src.display.about import INTRODUCTION_TEXT, TITLE, LLM_BENCHMARKS_TEXT
98
- from src.display.css_html_js import custom_css
99
- from src.display.utils import (
100
- AutoEvalColumn,
101
- fields,
102
- )
103
- from src.envs import API, H4_TOKEN, HF_HOME, REPO_ID, RESET_JUDGEMENT_ENV
104
- from src.leaderboard.build_leaderboard import build_leadearboard_df, download_openbench, download_dataset
105
- import huggingface_hub
106
- # huggingface_hub.login(token=H4_TOKEN)
107
-
108
- os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
109
-
110
- # Configure logging
111
- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
112
-
113
- # Start ephemeral Spaces on PRs (see config in README.md)
114
- enable_space_ci()
115
-
116
- # download_openbench()
117
 
118
 
119
- def restart_space():
 
120
  API.restart_space(repo_id=REPO_ID)
121
  download_openbench()
122
 
123
 
124
- def update_plot(selected_models):
125
- return create_plot(selected_models)
126
-
127
-
128
- def build_demo():
129
- """
130
- Строит интерфейс лидерборда DeathMath
131
- """
132
- # Загружаем данные для лидерборда
133
  download_openbench()
134
 
135
- # Создаем интерфейс с настройками темы
136
  demo = gr.Blocks(
137
  title="DeathMath Leaderboard",
138
  css=custom_css,
@@ -142,22 +200,22 @@ def build_demo():
142
  ),
143
  )
144
 
145
- # Получаем данные для лидерборда
146
- leaderboard_df = build_leadearboard_df()
147
 
148
- # Строим интерфейс
149
  with demo:
150
- # Заголовок и введение
151
  gr.HTML(TITLE)
152
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
153
 
154
- # Основные вкладки
155
  with gr.Tabs(elem_classes="tab-buttons"):
156
- # Вкладка лидерборда
157
  with gr.TabItem("🏅 Лидерборд", elem_id="llm-benchmark-tab-table", id=0):
158
  gr.Markdown("### Таблица результатов моделей DeathMath")
159
 
160
- # Таблица с результатами
161
  Leaderboard(
162
  value=leaderboard_df,
163
  datatype=[c.type for c in fields(AutoEvalColumn)],
@@ -171,7 +229,7 @@ def build_demo():
171
  ],
172
  )
173
 
174
- # Вкладка для отправки результатов
175
  with gr.TabItem("🚀 Отправить результаты", elem_id="submit-tab", id=1):
176
  with gr.Row():
177
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
@@ -186,269 +244,54 @@ def build_demo():
186
  with gr.Column():
187
  out = gr.Textbox("Здесь будет показан статус отправки")
188
  with gr.Column():
189
- login_button = gr.LoginButton(elem_id="oauth-button")
190
 
191
  submit_button = gr.Button("Отправить результаты", elem_id="submit_button", variant="primary")
192
 
193
- # Обработчики событий
194
  file_output.upload(handle_file_upload, file_output, [uploaded_file, file_path])
195
-
196
  submit_button.click(submit_file, [uploaded_file, file_path, model_name_textbox], [out])
197
 
198
- # Вкладка с аналитикой
199
- with gr.TabItem("📊 Аналитика", elem_id="analytics-tab", id=2):
200
- with gr.Column():
201
- if len(leaderboard_df) > 0:
202
- model_dropdown = gr.Dropdown(
203
- choices=leaderboard_df["model"].tolist(),
204
- label="Модели",
205
- value=leaderboard_df["model"].tolist()[:5]
206
- if len(leaderboard_df) >= 5
207
- else leaderboard_df["model"].tolist(),
208
- multiselect=True,
209
- info="Выберите модели для сравнения",
210
- )
211
- else:
212
- model_dropdown = gr.Dropdown(
213
- choices=["example/model-1", "example/model-2"],
214
- label="Модели",
215
- value=["example/model-1", "example/model-2"],
216
- multiselect=True,
217
- info="Выберите модели для сравнения",
218
- )
219
-
220
- # Вкладки для разных типов визуализации
221
- with gr.Tabs():
222
- with gr.TabItem("Столбчатая диаграмма"):
223
- bar_plot = gr.Plot(create_plot(model_dropdown.value))
224
-
225
- with gr.TabItem("Радарная диаграмма"):
226
- from src.radial.radial import create_radar_plot
227
-
228
- radar_plot = gr.Plot(create_radar_plot(model_dropdown.value))
229
-
230
- # Обновление графиков при изменении выбранных моделей
231
- model_dropdown.change(fn=create_plot, inputs=[model_dropdown], outputs=[bar_plot])
232
-
233
- model_dropdown.change(fn=create_radar_plot, inputs=[model_dropdown], outputs=[radar_plot])
234
-
235
- return demo
236
-
237
-
238
- # print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py'))
239
- # print(os.system('cd src/gen/ && python show_result.py --output'))
240
-
241
-
242
- def update_board():
243
- need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
244
- logging.info("Updating the leaderboard: %s", need_reset)
245
- if need_reset != "1":
246
- return
247
-
248
- os.environ[RESET_JUDGEMENT_ENV] = "0"
249
-
250
- try:
251
- # Загружаем актуальные данные из репозитория
252
- download_dataset("Vikhrmodels/DeathMath-leaderboard-data", "m_data")
253
- logging.info("Successfully downloaded model evaluation data")
254
-
255
- # Собираем данные из всех файлов моделей
256
- data_list = []
257
- seen_models = set() # Для отслеживания дубликатов
258
-
259
- for file in glob.glob("./m_data/model_data/external/*.json"):
260
- try:
261
- with open(file) as f:
262
- data = json.load(f)
263
-
264
- # Проверяем наличие необходимых полей
265
- model_name = data.get("model_name", "")
266
- if not model_name:
267
- logging.error(f"Failed to parse {file}: 'model_name' not found")
268
- continue
269
-
270
- # Предотвращаем дублирование моделей
271
- model_base_name = model_name.split("/")[-1].split("_v")[0]
272
- if model_base_name in seen_models:
273
- logging.info(f"Skipping duplicate model: {model_name}")
274
- continue
275
-
276
- seen_models.add(model_base_name)
277
-
278
- # Добавляем модель в список
279
- data_list.append(
280
- {
281
- "model_name": model_name,
282
- "score": float(data.get("score", 0.0)),
283
- "math_score": float(data.get("math_score", 0.0)),
284
- "physics_score": float(data.get("physics_score", 0.0)),
285
- "total_tokens": int(data.get("total_tokens", 0)),
286
- "evaluation_time": float(data.get("evaluation_time", 0.0)),
287
- "system_prompt": data.get(
288
- "system_prompt",
289
- "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
290
- ),
291
- }
292
  )
293
 
294
- except Exception as e:
295
- logging.error(f"Failed to process file {file}: {e}")
296
- continue
297
-
298
- # Если есть данные, сортируем их по общему баллу и сохраняем
299
- if data_list:
300
- # Сортируем по общему баллу
301
- data_list.sort(key=lambda x: x["score"], reverse=True)
302
-
303
- # Сохраняем обновленный лидерборд
304
- with open("genned.json", "w", encoding="utf-8") as f:
305
- json.dump(data_list, f, ensure_ascii=False, indent=2)
306
-
307
- # Загружаем обновленный лидерборд в репозиторий
308
- API.upload_file(
309
- path_or_fileobj="genned.json",
310
- path_in_repo="leaderboard.json",
311
- repo_id="Vikhrmodels/DeathMath-leaderboard-metainfo",
312
- repo_type="dataset",
313
- )
314
- logging.info(f"Updated leaderboard with {len(data_list)} models")
315
-
316
- # Генерируем README с таблицей лидерборда
317
- update_readme(data_list)
318
-
319
- except Exception as e:
320
- logging.error(f"Error updating leaderboard: {e}")
321
-
322
-
323
- def update_readme(data_list):
324
- """
325
- Генерирует README.md с таблицей лидерборда
326
- """
327
- try:
328
- import pandas as pd
329
- from datetime import datetime
330
-
331
- # Создаем DataFrame для удобного форматирования таблицы
332
- df = pd.DataFrame(data_list)
333
-
334
- # Форматируем числовые колонки
335
- for col in ["score", "math_score", "physics_score"]:
336
- if col in df.columns:
337
- df[col] = df[col].apply(lambda x: f"{x:.3f}")
338
-
339
- if "total_tokens" in df.columns:
340
- df["total_tokens"] = df["total_tokens"].apply(lambda x: f"{int(x):,}")
341
-
342
- if "evaluation_time" in df.columns:
343
- df["evaluation_time"] = df["evaluation_time"].apply(lambda x: f"{x:.1f}s")
344
-
345
- # Создаем содержимое README
346
- current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
347
-
348
- readme_content = f"""---
349
- title: DeathMath Leaderboard
350
- emoji: 🔢
351
- colorFrom: indigo
352
- colorTo: purple
353
- sdk: gradio
354
- sdk_version: "4.20.0"
355
- app_file: app.py
356
- pinned: false
357
- hf_oauth: true
358
- ---
359
- # DeathMath Leaderboard
360
-
361
- DeathMath - это бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
362
-
363
- ## Текущий лидерборд
364
-
365
- Последнее обновление: {current_date}
366
-
367
- | Модель | Общий балл | Математика | Физика | Токены | Время оценки |
368
- |--------|------------|------------|---------|---------|--------------|
369
- """
370
-
371
- # Добавляем строки таблицы
372
- for _, row in df.iterrows():
373
- model_name = row.get("model_name", "")
374
- readme_content += f"| {model_name} | {row.get('score', 'N/A')} | {row.get('math_score', 'N/A')} | {row.get('physics_score', 'N/A')} | {row.get('total_tokens', 'N/A')} | {row.get('evaluation_time', 'N/A')} |\n"
375
-
376
- readme_content += """
377
- ## Как принять участие в бенчмарке
378
-
379
- Для участия в бенчмарке DeathMath:
380
-
381
- 1. Клонируйте репозиторий и запустите тесты вашей модели
382
- 2. Загрузите результаты через [HuggingFace Space](https://huggingface.co/spaces/Vikhrmodels/DeathMath-leaderboard)
383
- 3. Дождитесь проверки и добавления результатов в лидерборд
384
-
385
- ## Формат результатов
386
-
387
- Результаты должны быть в формате JSON со следующей структурой:
388
- ```json
389
- {
390
- "score": 0.586,
391
- "math_score": 0.8,
392
- "physics_score": 0.373,
393
- "total_tokens": 1394299,
394
- "evaluation_time": 4533.2,
395
- "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
396
- }
397
- ```
398
-
399
- ## Лицензия
400
-
401
- Бенчмарк распространяется под лицензией Apache 2.0
402
- """
403
-
404
- # Сохраняем README
405
- with open("README.md", "w", encoding="utf-8") as f:
406
- f.write(readme_content)
407
-
408
- # Загружаем README в репозиторий
409
- API.upload_file(
410
- path_or_fileobj="README.md",
411
- path_in_repo="README.md",
412
- repo_id="Vikhrmodels/DeathMath-leaderboard-metainfo",
413
- repo_type="dataset",
414
- )
415
-
416
- logging.info("Updated README with leaderboard table")
417
 
418
- except Exception as e:
419
- logging.error(f"Failed to update README: {e}")
420
 
 
 
 
421
 
422
- def update_board_():
423
- """
424
- Инициализирующая версия функции обновления лидерборда.
425
- Удаляет все существующие данные перед первой загрузкой
426
- """
427
- try:
428
- # Очищаем каталоги перед загрузкой данных
429
- if os.path.exists("m_data"):
430
- # Удаляем все JSON-файлы моделей из старой версии Small Shlepa
431
- for old_file in glob.glob("./m_data/model_data/external/*.json"):
432
- try:
433
- os.remove(old_file)
434
- logging.info(f"Removed old file: {old_file}")
435
- except Exception as e:
436
- logging.error(f"Error removing old file {old_file}: {e}")
437
-
438
- # Вызываем основную функцию обновления
439
- update_board()
440
-
441
- except Exception as e:
442
- logging.error(f"Error in update_board_(): {e}")
443
 
444
 
445
  if __name__ == "__main__":
 
446
  os.environ[RESET_JUDGEMENT_ENV] = "1"
447
-
448
- scheduler = BackgroundScheduler()
449
- update_board_()
450
- scheduler.add_job(update_board, "interval", minutes=10)
451
- scheduler.start()
452
 
453
  demo_app = build_demo()
454
  demo_app.launch()
 
1
+ import glob
2
+ import json
3
  import logging
4
  import os
5
+ from io import BytesIO
6
 
7
  os.makedirs("tmp", exist_ok=True)
8
  os.environ["TMP_DIR"] = "tmp"
9
+
10
+ import gradio as gr # noqa: E402
 
 
 
 
 
11
  from gradio_leaderboard import Leaderboard, SelectColumns
12
  from gradio_space_ci import enable_space_ci
 
 
13
 
14
+ from src.display.about import INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
15
+ from src.display.css_html_js import custom_css
16
+ from src.display.utils import AutoEvalColumn, fields
17
+ from src.envs import API, REPO_ID, RESET_JUDGEMENT_ENV
18
+ from src.leaderboard.build_leaderboard import build_leaderboard_df, download_dataset, download_openbench
19
+ from src.radial.radial import create_plot, create_radar_plot
20
 
21
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
22
+
23
+ # Configure logging
24
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
25
+
26
+ # Start ephemeral Spaces on PRs (see config in README.md)
27
+ enable_space_ci()
28
+
29
+
30
+ def handle_file_upload(file) -> tuple[dict, str]:
31
+ """Handle JSON file upload and parse contents."""
32
  file_path = file.name.split("/")[-1] if "/" in file.name else file.name
33
  logging.info("File uploaded: %s", file_path)
34
+ with open(file.name) as f:
35
  v = json.load(f)
36
  return v, file_path
37
 
38
 
39
+ def rebuild_leaderboard() -> None:
40
+ """Rebuild and upload leaderboard data to HuggingFace."""
41
+ try:
42
+ # Download latest data from repository
43
+ download_dataset("Vikhrmodels/DeathMath-leaderboard-data", "m_data")
44
+ logging.info("Successfully downloaded model evaluation data")
45
+
46
+ # Collect data from all model files
47
+ data_list = []
48
+ best_model_results = {}
49
+
50
+ for file in glob.glob("./m_data/model_data/external/*.json"):
51
+ try:
52
+ with open(file, encoding="utf-8") as f:
53
+ data = json.load(f)
54
+
55
+ model_name = data.get("model_name", "")
56
+ if not model_name:
57
+ logging.error(f"Failed to parse {file}: 'model_name' not found")
58
+ continue
59
+
60
+ model_data = {
61
+ "model_name": model_name,
62
+ "score": float(data.get("score", 0.0)),
63
+ "math_score": float(data.get("math_score", 0.0)),
64
+ "physics_score": float(data.get("physics_score", 0.0)),
65
+ "total_tokens": int(data.get("total_tokens", 0)),
66
+ "evaluation_time": float(data.get("evaluation_time", 0.0)),
67
+ "system_prompt": data.get(
68
+ "system_prompt", "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
69
+ ),
70
+ }
71
+
72
+ # Keep only best result for each model
73
+ model_base_name = model_name.split("/")[-1].split("_v")[0]
74
+ if model_base_name in best_model_results:
75
+ if model_data["score"] > best_model_results[model_base_name]["score"]:
76
+ best_model_results[model_base_name] = model_data
77
+ else:
78
+ best_model_results[model_base_name] = model_data
79
+
80
+ except Exception as e:
81
+ logging.error(f"Failed to process file {file}: {e}")
82
+ continue
83
+
84
+ # Convert to sorted list
85
+ data_list = list(best_model_results.values())
86
+ data_list.sort(key=lambda x: x["score"], reverse=True)
87
+
88
+ if data_list:
89
+ # Save updated leaderboard
90
+ with open("genned.json", "w", encoding="utf-8") as f:
91
+ json.dump(data_list, f, ensure_ascii=False, indent=2)
92
+
93
+ # Upload updated leaderboard to repository
94
+ API.upload_file(
95
+ path_or_fileobj="genned.json",
96
+ path_in_repo="leaderboard.json",
97
+ repo_id="Vikhrmodels/DeathMath-leaderboard-metainfo",
98
+ repo_type="dataset",
99
+ )
100
+ logging.info(f"Updated leaderboard with {len(data_list)} models")
101
+ else:
102
+ logging.warning("No model data found to update leaderboard")
103
+
104
+ except Exception as e:
105
+ logging.error(f"Error updating leaderboard: {e}")
106
+
107
+
108
+ def submit_file(v: dict, _file_path: str, mn: str, profile: gr.OAuthProfile | None) -> str:
109
  """
110
+ Handle user model evaluation results submission.
111
 
112
  Args:
113
+ v: Uploaded evaluation results from JSON
114
+ file_path: Path to uploaded file
115
+ mn: Model name specified by user
116
+ profile: HuggingFace user profile
117
 
118
  Returns:
119
+ Success or error message
120
  """
121
  if profile is None:
122
  return "Hub Login Required: Войдите в HuggingFace, чтобы загрузить результаты"
123
 
124
  try:
125
+ # Check required fields
126
  required_fields = ["score", "math_score", "physics_score"]
127
  for field in required_fields:
128
  if field not in v:
129
  return f"Error: Отсутствует обязательное поле '{field}' в JSON файле"
130
 
131
+ # Create new object for database
132
  new_file = {
133
  "model_name": profile.username + "/" + mn,
134
  "score": float(v["score"]),
 
141
  ),
142
  }
143
 
144
+ # Validate score ranges
145
  if not (
146
  0 <= new_file["score"] <= 1 and 0 <= new_file["math_score"] <= 1 and 0 <= new_file["physics_score"] <= 1
147
  ):
148
  return "Error: Все значения оценок должны быть в диапазоне от 0 до 1"
149
 
150
+ # Create unique filename based on username and model name
151
  safe_filename = profile.username + "_" + mn.replace("/", "_").replace(" ", "_") + ".json"
152
 
153
+ # Create JSON in memory and upload to repository
154
  buf = BytesIO()
155
  buf.write(json.dumps(new_file, ensure_ascii=False).encode("utf-8"))
156
 
157
+ # Upload file to repository
158
  API.upload_file(
159
  path_or_fileobj=buf,
160
  path_in_repo="model_data/external/" + safe_filename,
 
162
  repo_type="dataset",
163
  )
164
 
 
 
 
 
165
  logging.info(f"Successfully uploaded model results: {new_file['model_name']}")
166
 
167
+ # Immediately rebuild leaderboard
168
+ rebuild_leaderboard()
169
+
170
  return f"Success! Результаты модели '{mn}' успешно отправлены в лидерборд DeathMath."
171
 
172
  except Exception as e:
 
174
  return f"Error: Произошла ошибка при отправке файла: {str(e)}"
175
 
176
 
177
+ def update_plot(selected_models: list[str]):
178
+ """Update bar chart with selected models."""
179
+ return create_plot(selected_models)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
 
182
+ def restart_space() -> None:
183
+ """Restart HuggingFace Space and reload data."""
184
  API.restart_space(repo_id=REPO_ID)
185
  download_openbench()
186
 
187
 
188
+ def build_demo() -> gr.Blocks:
189
+ """Build DeathMath leaderboard interface."""
190
+ # Load data for leaderboard
 
 
 
 
 
 
191
  download_openbench()
192
 
193
+ # Create interface with theme settings
194
  demo = gr.Blocks(
195
  title="DeathMath Leaderboard",
196
  css=custom_css,
 
200
  ),
201
  )
202
 
203
+ # Get leaderboard data
204
+ leaderboard_df = build_leaderboard_df()
205
 
206
+ # Build interface
207
  with demo:
208
+ # Header and introduction
209
  gr.HTML(TITLE)
210
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
211
 
212
+ # Main tabs
213
  with gr.Tabs(elem_classes="tab-buttons"):
214
+ # Leaderboard tab
215
  with gr.TabItem("🏅 Лидерборд", elem_id="llm-benchmark-tab-table", id=0):
216
  gr.Markdown("### Таблица результатов моделей DeathMath")
217
 
218
+ # Results table
219
  Leaderboard(
220
  value=leaderboard_df,
221
  datatype=[c.type for c in fields(AutoEvalColumn)],
 
229
  ],
230
  )
231
 
232
+ # Submit results tab
233
  with gr.TabItem("🚀 Отправить результаты", elem_id="submit-tab", id=1):
234
  with gr.Row():
235
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
244
  with gr.Column():
245
  out = gr.Textbox("Здесь будет показан статус отправки")
246
  with gr.Column():
247
+ _login_button = gr.LoginButton(elem_id="oauth-button")
248
 
249
  submit_button = gr.Button("Отправить результаты", elem_id="submit_button", variant="primary")
250
 
251
+ # Event handlers
252
  file_output.upload(handle_file_upload, file_output, [uploaded_file, file_path])
 
253
  submit_button.click(submit_file, [uploaded_file, file_path, model_name_textbox], [out])
254
 
255
+ # Analytics tab
256
+ with gr.TabItem("📊 Аналитика", elem_id="analytics-tab", id=2), gr.Column():
257
+ if len(leaderboard_df) > 0:
258
+ model_dropdown = gr.Dropdown(
259
+ choices=leaderboard_df["model"].tolist(),
260
+ label="Модели",
261
+ value=leaderboard_df["model"].tolist()[:5]
262
+ if len(leaderboard_df) >= 5
263
+ else leaderboard_df["model"].tolist(),
264
+ multiselect=True,
265
+ info="Выберите модели для сравнения",
266
+ )
267
+ else:
268
+ model_dropdown = gr.Dropdown(
269
+ choices=["example/model-1", "example/model-2"],
270
+ label="Модели",
271
+ value=["example/model-1", "example/model-2"],
272
+ multiselect=True,
273
+ info="Выберите модели для сравнения",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
  )
275
 
276
+ # Tabs for different visualization types
277
+ with gr.Tabs():
278
+ with gr.TabItem("Столбчатая диаграмма"):
279
+ bar_plot = gr.Plot(create_plot(model_dropdown.value))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
+ with gr.TabItem("Радарная диаграмма"):
282
+ radar_plot = gr.Plot(create_radar_plot(model_dropdown.value))
283
 
284
+ # Update plots when selected models change
285
+ model_dropdown.change(fn=create_plot, inputs=[model_dropdown], outputs=[bar_plot])
286
+ model_dropdown.change(fn=create_radar_plot, inputs=[model_dropdown], outputs=[radar_plot])
287
 
288
+ return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
 
290
 
291
  if __name__ == "__main__":
292
+ # Initialize leaderboard on startup
293
  os.environ[RESET_JUDGEMENT_ENV] = "1"
294
+ rebuild_leaderboard()
 
 
 
 
295
 
296
  demo_app = build_demo()
297
  demo_app.launch()
data/.gitattributes ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
+ *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
data/README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: DeathMath Leaderboard
3
+ emoji: 🔢
4
+ colorFrom: yellow
5
+ colorTo: amber
6
+ sdk: gradio
7
+ sdk_version: "4.20.0"
8
+ app_file: app.py
9
+ pinned: false
10
+ hf_oauth: true
11
+ ---
12
+ # DeathMath Leaderboard
13
+
14
+ Бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
15
+
16
+ ## Текущий лидерборд
17
+
18
+ Последнее обновление: 2025-11-19 17:58:31
19
+
20
+ | Модель | Общий балл | Математика | Физика | Токены | Время |
21
+ |--------|------------|------------|---------|---------|--------|
22
+ | Anonumous/Gemini 3 Pro | 0.776 | 0.940 | 0.612 | 2,441,816 | 6400.9s |
23
+ | AlexWortega/Gemeni 2.5 Pro | 0.728 | 0.874 | 0.582 | 2,227,721 | 4937.3s |
24
+ | Anonumous/GPT-5 | 0.705 | 0.910 | 0.500 | 1,374,085 | 4908.4s |
25
+ | o3-mini-high | 0.692 | 0.884 | 0.500 | 2,186,756 | 5107.5s |
26
+ | Anonumous/GPT-OSS-120B | 0.675 | 0.849 | 0.500 | 671,703 | 939.1s |
27
+ | o3 | 0.669 | 0.868 | 0.469 | 1,164,000 | 5025.8s |
28
+ | o4-mini-high | 0.664 | 0.868 | 0.459 | 1,997,548 | 5811.0s |
29
+ | Anonumous/GPT-5 Nano | 0.649 | 0.839 | 0.459 | 2,218,450 | 5109.7s |
30
+ | Anonumous/GPT-5 Mini | 0.634 | 0.849 | 0.418 | 993,326 | 3368.5s |
31
+ | Anonumous/Claude Sonnet 4.5 | 0.610 | 0.688 | 0.531 | 461,074 | 1216.3s |
32
+ | Anonumous/Claude Opus 4.1 | 0.607 | 0.704 | 0.510 | 448,628 | 1927.2s |
33
+ | Anonumous/GPT-OSS-20B | 0.583 | 0.789 | 0.378 | 1,034,077 | 4009.3s |
34
+ | AlexWortega/Claude Sonnet 4 | 0.551 | 0.633 | 0.469 | 490,996 | 1294.7s |
35
+ | Qwen QwQ 32B | 0.530 | 0.653 | 0.408 | 2,112,951 | 16974.7s |
36
+ | Gemini 2.0 Flash | 0.514 | 0.558 | 0.469 | 495,313 | 736.6s |
37
+ | Claude 3.7 Sonnet | 0.470 | 0.542 | 0.398 | 405,583 | 1082.0s |
38
+ | gpt-4.1 | 0.466 | 0.584 | 0.347 | 549,983 | 2434.6s |
39
+ | LakoMoor/QVikhr-3-8B-Instruction | 0.445 | 0.563 | 0.327 | 1,486,327 | 11874.2s |
40
+ | LakoMoor/Qwen3-8B | 0.417 | 0.538 | 0.296 | 1,576,445 | 12744.3s |
41
+ | Gemma 3 27B | 0.400 | 0.474 | 0.327 | 384,164 | 3024.3s |
42
+ | Claude 3.5 Sonnet | 0.376 | 0.416 | 0.337 | 252,843 | 702.0s |
43
+ | DeepSeek R1 Distill Qwen 14B | 0.346 | 0.447 | 0.245 | 806,258 | 7904.1s |
44
+ | DeepSeek V3 0324 | 0.343 | 0.432 | 0.255 | 339,857 | 2901.8s |
45
+ | gpt-4o | 0.338 | 0.432 | 0.245 | 399,483 | 1145.0s |
46
+ | GigaChat-2-Max | 0.314 | 0.363 | 0.265 | 185,204 | 965.8s |
47
+ | AvitoTech/A-vibe | 0.280 | 0.367 | 0.194 | 797,771 | 4097.4s |
48
+ | GigaChat-2-Pro | 0.270 | 0.316 | 0.224 | 215,297 | 1250.3s |
49
+ | Qwen2.5 72B Instruct | 0.189 | 0.379 | 0.000 | 322,441 | 5670.7s |
50
+ | GigaChat-Max | 0.181 | 0.189 | 0.173 | 200,271 | 1056.5s |
51
+ | Gemma 3 4B | 0.180 | 0.258 | 0.102 | 726,285 | 2959.4s |
52
+ | GigaChat-2 | 0.083 | 0.095 | 0.071 | 136,051 | 576.9s |
53
+
54
+ ## Как принять участие
55
+
56
+ 1. Клонируйте репозиторий бенчмарка
57
+ 2. Запустите оценку вашей модели
58
+ 3. Загрузите результаты через [HuggingFace Space](https://huggingface.co/spaces/Vikhrmodels/DeathMath-leaderboard)
59
+
60
+ ## Формат результатов
61
+
62
+ ```json
63
+ {
64
+ "score": 0.586,
65
+ "math_score": 0.8,
66
+ "physics_score": 0.373,
67
+ "total_tokens": 1394299,
68
+ "evaluation_time": 4533.2,
69
+ "system_prompt": "Вы - полезный помощник по математике и физике."
70
+ }
71
+ ```
72
+
73
+ ## Лицензия
74
+
75
+ Apache 2.0
generate_initial_leaderboard.py DELETED
@@ -1,334 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding: utf-8 -*-
3
- """
4
- Скрипт для генерации первоначального лидерборда DeathMath и загрузки данных в HuggingFace.
5
- Использует результаты из директории results и загружает их в репозиторий Vikhrmodels/DeathMath-leaderboard-data.
6
- """
7
-
8
- import os
9
- import json
10
- import logging
11
- import pandas as pd
12
- import argparse
13
- from pathlib import Path
14
- from huggingface_hub import HfApi, create_repo
15
- from datetime import datetime
16
-
17
- # Настройка логирования
18
- logging.basicConfig(
19
- level=logging.INFO,
20
- format="%(asctime)s - %(levelname)s - %(message)s",
21
- handlers=[logging.FileHandler("leaderboard_generation.log"), logging.StreamHandler()],
22
- )
23
- logger = logging.getLogger(__name__)
24
-
25
- # Константы
26
- REPO_ID = "Vikhrmodels/DeathMath-leaderboard-data"
27
- METAINFO_REPO_ID = "Vikhrmodels/DeathMath-leaderboard-metainfo"
28
-
29
-
30
- def setup_repositories(token):
31
- """
32
- Создает необходимые репозитории на HuggingFace Hub, если они еще не существуют.
33
-
34
- Args:
35
- token (str): Токен для доступа к HuggingFace Hub
36
- """
37
- api = HfApi(token=token)
38
-
39
- try:
40
- # Проверка и создание репозитория для данных лидерборда
41
- try:
42
- api.repo_info(repo_id=REPO_ID, repo_type="dataset")
43
- logger.info(f"Репозиторий {REPO_ID} уже существует")
44
- except Exception:
45
- logger.info(f"Создание репозитория для данных лидерборда: {REPO_ID}")
46
- create_repo(repo_id=REPO_ID, repo_type="dataset", token=token)
47
-
48
- # Проверка и создание репозитория для метаданных лидерборда
49
- try:
50
- api.repo_info(repo_id=METAINFO_REPO_ID, repo_type="dataset")
51
- logger.info(f"Репозиторий {METAINFO_REPO_ID} уже существует")
52
- except Exception:
53
- logger.info(f"Создание репозитория для метаданных лидерборда: {METAINFO_REPO_ID}")
54
- create_repo(repo_id=METAINFO_REPO_ID, repo_type="dataset", token=token)
55
-
56
- return api
57
- except Exception as e:
58
- logger.error(f"Ошибка при создании репозиториев: {e}")
59
- raise
60
-
61
-
62
- def load_results(results_file):
63
- """
64
- Загружает результаты из JSON файла и удаляет дубликаты.
65
-
66
- Args:
67
- results_file (str): Путь к файлу с результатами
68
-
69
- Returns:
70
- list: Список записей для лидерборда без дубликатов
71
- """
72
- try:
73
- with open(results_file, "r", encoding="utf-8") as f:
74
- data = json.load(f)
75
-
76
- leaderboard_entries = []
77
- seen_models = set() # Множество для отслеживания уже обработанных моделей
78
-
79
- for key, value in data.items():
80
- if "_Combined_" in key: # берем только комбинированные результаты
81
- model_name = value["model_name"]
82
-
83
- # Пропускаем модель, если она уже была добавлена
84
- if model_name in seen_models:
85
- logger.info(f"Пропускаем дублирующуюся модель: {model_name}")
86
- continue
87
-
88
- # Добавляем модель во множество обработанных
89
- seen_models.add(model_name)
90
-
91
- leaderboard_entry = {
92
- "model_name": model_name,
93
- "score": value["score"],
94
- "math_score": value["math_score"],
95
- "physics_score": value["physics_score"],
96
- "total_tokens": value["total_tokens"],
97
- "evaluation_time": value["evaluation_time"],
98
- "system_prompt": value.get(
99
- "system_prompt", "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
100
- ),
101
- }
102
- leaderboard_entries.append(leaderboard_entry)
103
-
104
- # Сортировка по общему баллу
105
- leaderboard_entries.sort(key=lambda x: x["score"], reverse=True)
106
- logger.info(f"Загружено {len(leaderboard_entries)} уникальных моделей после удаления дубликатов")
107
- return leaderboard_entries
108
-
109
- except Exception as e:
110
- logger.error(f"Ошибка при загрузке результатов: {e}")
111
- raise
112
-
113
-
114
- def prepare_directory_structure():
115
- """
116
- Создает необходимую структ��ру директорий для внешних моделей.
117
-
118
- Returns:
119
- str: Путь к временной директории с подготовленной структурой
120
- """
121
- temp_dir = Path("./temp_leaderboard")
122
- model_data_dir = temp_dir / "model_data" / "external"
123
-
124
- # Очистка и создание директорий
125
- if temp_dir.exists():
126
- import shutil
127
-
128
- shutil.rmtree(temp_dir)
129
-
130
- model_data_dir.mkdir(parents=True, exist_ok=True)
131
-
132
- return str(temp_dir)
133
-
134
-
135
- def upload_model_files(api, leaderboard_entries, temp_dir):
136
- """
137
- Загружает файлы моделей в репозиторий данных лидерборда.
138
-
139
- Args:
140
- api (HfApi): Экземпляр API для взаимодействия с HuggingFace
141
- leaderboard_entries (list): Список записей для лидерборда
142
- temp_dir (str): Путь к временной директории
143
- """
144
- model_data_dir = os.path.join(temp_dir, "model_data", "external")
145
-
146
- for entry in leaderboard_entries:
147
- model_name = entry["model_name"]
148
- safe_filename = model_name.replace("/", "_").replace(" ", "_")
149
- file_path = os.path.join(model_data_dir, f"{safe_filename}.json")
150
-
151
- with open(file_path, "w", encoding="utf-8") as f:
152
- json.dump(entry, f, ensure_ascii=False, indent=2)
153
-
154
- # Загрузка файла модели в репозиторий
155
- api.upload_file(
156
- path_or_fileobj=file_path,
157
- path_in_repo=f"model_data/external/{safe_filename}.json",
158
- repo_id=REPO_ID,
159
- repo_type="dataset",
160
- )
161
- logger.info(f"Загружен файл модели: {safe_filename}.json")
162
-
163
-
164
- def generate_leaderboard_json(leaderboard_entries):
165
- """
166
- Создает JSON файл с данными лидерборда.
167
-
168
- Args:
169
- leaderboard_entries (list): Список записей для лидерборда
170
-
171
- Returns:
172
- str: Путь к созданному JSON файлу
173
- """
174
- leaderboard_file = "leaderboard.json"
175
-
176
- with open(leaderboard_file, "w", encoding="utf-8") as f:
177
- json.dump(leaderboard_entries, f, ensure_ascii=False, indent=2)
178
-
179
- return leaderboard_file
180
-
181
-
182
- def generate_readme(leaderboard_entries):
183
- """
184
- Генерирует README.md с информацией о лидерборде.
185
-
186
- Args:
187
- leaderboard_entries (list): Список записей для лидерборда
188
-
189
- Returns:
190
- str: Путь к созданному README файлу
191
- """
192
- readme_file = "README.md"
193
-
194
- # Создаем DataFrame для удобного форматирования таблицы
195
- df = pd.DataFrame(leaderboard_entries)
196
-
197
- # Форматируем числовые колонки
198
- for col in ["score", "math_score", "physics_score"]:
199
- if col in df.columns:
200
- df[col] = df[col].apply(lambda x: f"{x:.3f}")
201
-
202
- if "total_tokens" in df.columns:
203
- df["total_tokens"] = df["total_tokens"].apply(lambda x: f"{int(x):,}")
204
-
205
- if "evaluation_time" in df.columns:
206
- df["evaluation_time"] = df["evaluation_time"].apply(lambda x: f"{x:.1f}s")
207
-
208
- # Создаем содержимое README
209
- current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
210
-
211
- readme_content = f"""# DeathMath Leaderboard
212
-
213
- DeathMath - это бенчмарк для оценки способности моделей решать сложные математические и физические задачи на русском языке.
214
-
215
- ## Текущий лидерборд
216
-
217
- Последнее обновление: {current_date}
218
-
219
- | Модель | Общий балл | Математика | Физика | Токены | Время оценки |
220
- |--------|------------|------------|---------|---------|--------------|
221
- """
222
-
223
- # Добавляем строки таблицы
224
- for _, row in df.iterrows():
225
- readme_content += f"| {row['model_name']} | {row['score']} | {row['math_score']} | {row['physics_score']} | {row.get('total_tokens', 'N/A')} | {row.get('evaluation_time', 'N/A')} |\n"
226
-
227
- readme_content += """
228
- ## Как принять участие в бенчмарке
229
-
230
- Для участия в бенчмарке DeathMath:
231
-
232
- 1. Клонируйте репозиторий и запустите тесты вашей модели
233
- 2. Загрузите результаты через [HuggingFace Space](https://huggingface.co/spaces/Vikhrmodels/DeathMath-leaderboard)
234
- 3. Дождитесь проверки и добавления результатов в лидерборд
235
-
236
- ## Формат результатов
237
-
238
- Результаты должны быть в формате JSON со следующей структурой:
239
- ```json
240
- {
241
- "score": 0.586,
242
- "math_score": 0.8,
243
- "physics_score": 0.373,
244
- "total_tokens": 1394299,
245
- "evaluation_time": 4533.2,
246
- "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
247
- }
248
- ```
249
-
250
- ## Лицензия
251
-
252
- Бенчмарк распространяется под лицензией Apache 2.0
253
- """
254
-
255
- with open(readme_file, "w", encoding="utf-8") as f:
256
- f.write(readme_content)
257
-
258
- return readme_file
259
-
260
-
261
- def upload_leaderboard_files(api, leaderboard_file, readme_file):
262
- """
263
- Загружает файлы лидерборда в репозиторий метаданных.
264
-
265
- Args:
266
- api (HfApi): Экземпляр API для взаимодействия с HuggingFace
267
- leaderboard_file (str): Путь к JSON файлу лидерборда
268
- readme_file (str): Путь к README файлу
269
- """
270
- # Загрузка JSON лидерборда
271
- api.upload_file(
272
- path_or_fileobj=leaderboard_file, path_in_repo="leaderboard.json", repo_id=METAINFO_REPO_ID, repo_type="dataset"
273
- )
274
- logger.info(f"Загружен файл лидерборда: leaderboard.json в {METAINFO_REPO_ID}")
275
-
276
- # Загрузка README
277
- api.upload_file(
278
- path_or_fileobj=readme_file, path_in_repo="README.md", repo_id=METAINFO_REPO_ID, repo_type="dataset"
279
- )
280
- logger.info(f"Загружен README: README.md в {METAINFO_REPO_ID}")
281
-
282
-
283
- def main():
284
- # Парсинг аргументов командной строки
285
- parser = argparse.ArgumentParser(description="Генерация первоначального лидерборда DeathMath")
286
- parser.add_argument(
287
- "--results",
288
- default="../results/leaderboard_results.json",
289
- help="Путь к файлу с результатами (по умолчанию: ../results/leaderboard_results.json)",
290
- )
291
- parser.add_argument("--token", required=True, help="Токен для доступа к HuggingFace Hub")
292
-
293
- args = parser.parse_args()
294
-
295
- try:
296
- logger.info("Начинаем генерацию лидерборда DeathMath")
297
-
298
- # Настраиваем репозитории
299
- api = setup_repositories(args.token)
300
- logger.info("Репозитории успешно настроены")
301
-
302
- # Загружаем результаты
303
- leaderboard_entries = load_results(args.results)
304
- logger.info(f"Загружено {len(leaderboard_entries)} записей для лидерборда")
305
-
306
- # Подготавливаем структуру директорий
307
- temp_dir = prepare_directory_structure()
308
- logger.info(f"Создана временная директория: {temp_dir}")
309
-
310
- # Загружаем файлы моделей
311
- upload_model_files(api, leaderboard_entries, temp_dir)
312
- logger.info("Файлы моделей успешно загружены")
313
-
314
- # Генерируем JSON лидерборда
315
- leaderboard_file = generate_leaderboard_json(leaderboard_entries)
316
- logger.info(f"Создан файл лидерборда: {leaderboard_file}")
317
-
318
- # Генерируем README
319
- readme_file = generate_readme(leaderboard_entries)
320
- logger.info(f"Создан README: {readme_file}")
321
-
322
- # Загружаем файлы лидерборда
323
- upload_leaderboard_files(api, leaderboard_file, readme_file)
324
- logger.info("Файлы лидерборда успешно загружены")
325
-
326
- logger.info("Генерация лидерборда успешно завершена!")
327
-
328
- except Exception as e:
329
- logger.error(f"Ошибка при генерации лидерборда: {e}")
330
- raise
331
-
332
-
333
- if __name__ == "__main__":
334
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
genned.json CHANGED
@@ -1 +1,281 @@
1
- [{"musicmc": 0.2936170212765957, "lawmc": 0.5345005149330587, "model": "RefalMachine/llama3 ushanka", "moviesmc": 0.35185185185185186, "booksmc": 0.3257261410788382, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.251063829787234, "lawmc": 0.48712667353244077, "model": "apsys/vikhr-52-7b", "moviesmc": 0.4212962962962963, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.09361702127659574, "mmluproru": 0.10207253886010363, "lawmc": 0.11431513903192585, "model": "NousResearch/Llama-2-7b-hf", "moviesmc": 0.07175925925925926, "booksmc": 0.1078838174273859, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2553191489361702, "mmluproru": 0.2621761658031088, "lawmc": 0.5818743563336766, "model": "google/gemma-2-9b", "moviesmc": 0.5046296296296297, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.42636457260556127, "model": "cohere/aya-8b", "moviesmc": 0.3287037037037037, "booksmc": 0.24273858921161826, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2936170212765957, "lawmc": 0.48094747682801237, "model": "apsys/saiga_3_8b", "moviesmc": 0.3402777777777778, "booksmc": 0.3112033195020747, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "alexwortega/saiga_submit", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.28297872340425534, "lawmc": 0.5406797116374872, "model": "microsoft/Phi-3-medium-4k-instruct", "moviesmc": 0.42824074074074076, "booksmc": 0.3817427385892116, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/tlite-it-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2680851063829787, "mmluproru": 0.20103626943005182, "lawmc": 0.5386199794026777, "model": "Vikhrmodels/it-5.2-fp16-cp", "moviesmc": 0.4537037037037037, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2723404255319149, "lawmc": 0.4850669412976313, "model": "Nexusflow/Starling-LM-7B-beta", "moviesmc": 0.38657407407407407, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.20851063829787234, "lawmc": 0.47167868177136973, "model": "Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R", "moviesmc": 0.3055555555555556, "booksmc": 0.26141078838174275, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.25957446808510637, "mmluproru": 0.19378238341968912, "lawmc": 0.518022657054583, "model": "lightblue/suzume-llama-3-8B-multilingual", "moviesmc": 0.3287037037037037, "booksmc": 0.2966804979253112, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.18808290155440416, "lawmc": 0.6426364572605562, "model": "apsys/vikhr-it-5.4-fp16-orpo-v2 ", "moviesmc": 0.4699074074074074, "booksmc": 0.33402489626556015, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.2872340425531915, "lawmc": 0.5066941297631308, "model": "vikhr-52-7b-chat-hf/apsys", "moviesmc": 0.4837962962962963, "booksmc": 0.3070539419087137, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.3021276595744681, "lawmc": 0.544799176107106, "model": "IlyaGusev/saiga_llama3_8b", "moviesmc": 0.3958333333333333, "booksmc": 0.3381742738589212, "model_dtype": "torch.bfloat16", "ppl": 0}, {"musicmc": 0.24468085106382978, "lawmc": 0.4788877445932029, "model": "apsys/vikhr-53-7b-32k", "moviesmc": 0.4050925925925926, "booksmc": 0.3049792531120332, "model_dtype": "torch.float16", "ppl": 0}, {"musicmc": 0.28085106382978725, "mmluproru": 0.17979274611398963, "lawmc": 0.5324407826982492, "model": "apsys/T-lite-instruct-0.1", "moviesmc": 0.4699074074074074, "booksmc": 0.3360995850622407, "model_dtype": "torch.float16", "ppl": 0}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "model_name": "Anonumous/Gemini 3 Pro",
4
+ "score": 0.7759716952107476,
5
+ "math_score": 0.9396984924623115,
6
+ "physics_score": 0.6122448979591837,
7
+ "total_tokens": 2441816,
8
+ "evaluation_time": 6400.850697278976,
9
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
10
+ },
11
+ {
12
+ "model_name": "AlexWortega/Gemeni 2.5 Pro",
13
+ "score": 0.728,
14
+ "math_score": 0.874,
15
+ "physics_score": 0.582,
16
+ "total_tokens": 2227721,
17
+ "evaluation_time": 4937.3,
18
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
19
+ },
20
+ {
21
+ "model_name": "Anonumous/GPT-5",
22
+ "score": 0.7047738693467337,
23
+ "math_score": 0.9095477386934674,
24
+ "physics_score": 0.5,
25
+ "total_tokens": 1374085,
26
+ "evaluation_time": 4908.358837604523,
27
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по м��тематике и физике. Отвечай на русском языке."
28
+ },
29
+ {
30
+ "model_name": "o3-mini-high",
31
+ "score": 0.6921052631578948,
32
+ "math_score": 0.8842105263157894,
33
+ "physics_score": 0.5,
34
+ "total_tokens": 2186756,
35
+ "evaluation_time": 5107.464560031891,
36
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
37
+ },
38
+ {
39
+ "model_name": "Anonumous/GPT-OSS-120B",
40
+ "score": 0.6746231155778895,
41
+ "math_score": 0.8492462311557789,
42
+ "physics_score": 0.5,
43
+ "total_tokens": 671703,
44
+ "evaluation_time": 939.0848069190979,
45
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
46
+ },
47
+ {
48
+ "model_name": "o3",
49
+ "score": 0.6689044038668099,
50
+ "math_score": 0.868421052631579,
51
+ "physics_score": 0.46938775510204084,
52
+ "total_tokens": 1164000,
53
+ "evaluation_time": 5025.797904491425,
54
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
55
+ },
56
+ {
57
+ "model_name": "o4-mini-high",
58
+ "score": 0.6638023630504833,
59
+ "math_score": 0.868421052631579,
60
+ "physics_score": 0.45918367346938777,
61
+ "total_tokens": 1997548,
62
+ "evaluation_time": 5811.026826620102,
63
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
64
+ },
65
+ {
66
+ "model_name": "Anonumous/GPT-5 Nano",
67
+ "score": 0.6491898266844426,
68
+ "math_score": 0.8391959798994975,
69
+ "physics_score": 0.45918367346938777,
70
+ "total_tokens": 2218450,
71
+ "evaluation_time": 5109.693122148514,
72
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
73
+ },
74
+ {
75
+ "model_name": "Anonumous/GPT-5 Mini",
76
+ "score": 0.6338067890472772,
77
+ "math_score": 0.8492462311557789,
78
+ "physics_score": 0.41836734693877553,
79
+ "total_tokens": 993326,
80
+ "evaluation_time": 3368.527199983597,
81
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
82
+ },
83
+ {
84
+ "model_name": "Anonumous/Claude Sonnet 4.5",
85
+ "score": 0.6095272279766177,
86
+ "math_score": 0.6884422110552764,
87
+ "physics_score": 0.5306122448979592,
88
+ "total_tokens": 461074,
89
+ "evaluation_time": 1216.3338594436646,
90
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
91
+ },
92
+ {
93
+ "model_name": "Anonumous/Claude Opus 4.1",
94
+ "score": 0.6068608347861758,
95
+ "math_score": 0.7035175879396985,
96
+ "physics_score": 0.5102040816326531,
97
+ "total_tokens": 448628,
98
+ "evaluation_time": 1927.2011346817017,
99
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
100
+ },
101
+ {
102
+ "model_name": "Anonumous/GPT-OSS-20B",
103
+ "score": 0.5832478720131269,
104
+ "math_score": 0.7889447236180904,
105
+ "physics_score": 0.37755102040816324,
106
+ "total_tokens": 1034077,
107
+ "evaluation_time": 4009.333387374878,
108
+ "system_prompt": "Ты - полезный ИИ-ассистент, решающий задачи по математике и физике. Отвечай на русском языке."
109
+ },
110
+ {
111
+ "model_name": "AlexWortega/Claude Sonnet 4",
112
+ "score": 0.551,
113
+ "math_score": 0.633,
114
+ "physics_score": 0.469,
115
+ "total_tokens": 490996,
116
+ "evaluation_time": 1294.7,
117
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
118
+ },
119
+ {
120
+ "model_name": "Qwen QwQ 32B",
121
+ "score": 0.5303974221267455,
122
+ "math_score": 0.6526315789473685,
123
+ "physics_score": 0.40816326530612246,
124
+ "total_tokens": 2112951,
125
+ "evaluation_time": 16974.732090711594,
126
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
127
+ },
128
+ {
129
+ "model_name": "Gemini 2.0 Flash",
130
+ "score": 0.5136412459720731,
131
+ "math_score": 0.5578947368421052,
132
+ "physics_score": 0.46938775510204084,
133
+ "total_tokens": 495313,
134
+ "evaluation_time": 736.5758397579193,
135
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
136
+ },
137
+ {
138
+ "model_name": "Claude 3.7 Sonnet",
139
+ "score": 0.47003222341568207,
140
+ "math_score": 0.5421052631578948,
141
+ "physics_score": 0.3979591836734694,
142
+ "total_tokens": 405583,
143
+ "evaluation_time": 1081.969652414322,
144
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
145
+ },
146
+ {
147
+ "model_name": "gpt-4.1",
148
+ "score": 0.46557465091299677,
149
+ "math_score": 0.5842105263157895,
150
+ "physics_score": 0.3469387755102041,
151
+ "total_tokens": 549983,
152
+ "evaluation_time": 2434.5933046340942,
153
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
154
+ },
155
+ {
156
+ "model_name": "LakoMoor/QVikhr-3-8B-Instruction",
157
+ "score": 0.445,
158
+ "math_score": 0.563,
159
+ "physics_score": 0.327,
160
+ "total_tokens": 1486327,
161
+ "evaluation_time": 11874.2,
162
+ "system_prompt": "You are a helpful assistant. Answer in Russian."
163
+ },
164
+ {
165
+ "model_name": "LakoMoor/Qwen3-8B",
166
+ "score": 0.417,
167
+ "math_score": 0.538,
168
+ "physics_score": 0.296,
169
+ "total_tokens": 1576445,
170
+ "evaluation_time": 12744.3,
171
+ "system_prompt": "You are a helpful assistant. Answer in Russian."
172
+ },
173
+ {
174
+ "model_name": "Gemma 3 27B",
175
+ "score": 0.40010741138560685,
176
+ "math_score": 0.47368421052631576,
177
+ "physics_score": 0.32653061224489793,
178
+ "total_tokens": 384164,
179
+ "evaluation_time": 3024.3041207790375,
180
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
181
+ },
182
+ {
183
+ "model_name": "Claude 3.5 Sonnet",
184
+ "score": 0.3762620837808808,
185
+ "math_score": 0.41578947368421054,
186
+ "physics_score": 0.336734693877551,
187
+ "total_tokens": 252843,
188
+ "evaluation_time": 702.003228187561,
189
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
190
+ },
191
+ {
192
+ "model_name": "DeepSeek R1 Distill Qwen 14B",
193
+ "score": 0.3461331901181525,
194
+ "math_score": 0.4473684210526316,
195
+ "physics_score": 0.24489795918367346,
196
+ "total_tokens": 806258,
197
+ "evaluation_time": 7904.137916564941,
198
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
199
+ },
200
+ {
201
+ "model_name": "DeepSeek V3 0324",
202
+ "score": 0.34334049409237377,
203
+ "math_score": 0.43157894736842106,
204
+ "physics_score": 0.25510204081632654,
205
+ "total_tokens": 339857,
206
+ "evaluation_time": 2901.8081181049347,
207
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
208
+ },
209
+ {
210
+ "model_name": "gpt-4o",
211
+ "score": 0.3382384532760473,
212
+ "math_score": 0.43157894736842106,
213
+ "physics_score": 0.24489795918367346,
214
+ "total_tokens": 399483,
215
+ "evaluation_time": 1145.0411348342896,
216
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
217
+ },
218
+ {
219
+ "model_name": "GigaChat-2-Max",
220
+ "score": 0.3142320085929109,
221
+ "math_score": 0.3631578947368421,
222
+ "physics_score": 0.2653061224489796,
223
+ "total_tokens": 185204,
224
+ "evaluation_time": 965.8490540981293,
225
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
226
+ },
227
+ {
228
+ "model_name": "AvitoTech/A-vibe",
229
+ "score": 0.2803558609373398,
230
+ "math_score": 0.36683417085427134,
231
+ "physics_score": 0.19387755102040816,
232
+ "total_tokens": 797771,
233
+ "evaluation_time": 4097.367070198059,
234
+ "system_prompt": null
235
+ },
236
+ {
237
+ "model_name": "GigaChat-2-Pro",
238
+ "score": 0.27013963480128894,
239
+ "math_score": 0.3157894736842105,
240
+ "physics_score": 0.22448979591836735,
241
+ "total_tokens": 215297,
242
+ "evaluation_time": 1250.343486070633,
243
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
244
+ },
245
+ {
246
+ "model_name": "Qwen2.5 72B Instruct",
247
+ "score": 0.18947368421052632,
248
+ "math_score": 0.37894736842105264,
249
+ "physics_score": 0.0,
250
+ "total_tokens": 322441,
251
+ "evaluation_time": 5670.72598361969,
252
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
253
+ },
254
+ {
255
+ "model_name": "GigaChat-Max",
256
+ "score": 0.18147153598281418,
257
+ "math_score": 0.18947368421052632,
258
+ "physics_score": 0.17346938775510204,
259
+ "total_tokens": 200271,
260
+ "evaluation_time": 1056.4797942638397,
261
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
262
+ },
263
+ {
264
+ "model_name": "Gemma 3 4B",
265
+ "score": 0.17996777658431795,
266
+ "math_score": 0.2578947368421053,
267
+ "physics_score": 0.10204081632653061,
268
+ "total_tokens": 726285,
269
+ "evaluation_time": 2959.3581898212433,
270
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
271
+ },
272
+ {
273
+ "model_name": "GigaChat-2",
274
+ "score": 0.08308270676691729,
275
+ "math_score": 0.09473684210526316,
276
+ "physics_score": 0.07142857142857142,
277
+ "total_tokens": 136051,
278
+ "evaluation_time": 576.884927034378,
279
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
280
+ }
281
+ ]
m_data/.gitattributes CHANGED
@@ -9,6 +9,7 @@
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.lz4 filter=lfs diff=lfs merge=lfs -text
 
12
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
  *.model filter=lfs diff=lfs merge=lfs -text
14
  *.msgpack filter=lfs diff=lfs merge=lfs -text
@@ -53,3 +54,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
  *.model filter=lfs diff=lfs merge=lfs -text
15
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
54
  *.jpg filter=lfs diff=lfs merge=lfs -text
55
  *.jpeg filter=lfs diff=lfs merge=lfs -text
56
  *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
pyproject.toml CHANGED
@@ -1,54 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  [tool.ruff]
2
  line-length = 120
3
- target-version = "py313"
4
  include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
5
- ignore=["I","EM","FBT","TRY003","S101","D101","D102","D103","D104","D105","G004","D107","FA102"]
6
- fixable=["ALL"]
7
- select=["ALL"]
8
 
9
  [tool.ruff.lint]
10
- select = ["E", "F"]
 
11
  fixable = ["ALL"]
12
- ignore = ["E501"] # line too long (black is taking care of this)
13
 
14
- [tool.isort]
15
- profile = "black"
16
- line_length = 119
 
17
 
18
- [tool.black]
19
- line-length = 119
20
-
21
- [tool.poetry]
22
- package-mode = false
23
- name = "open-llm-leaderboard"
24
- version = "0.1.0"
25
- description = ""
26
- authors = []
27
- readme = "README.md"
28
-
29
- [tool.poetry.dependencies]
30
- python = "3.13.3"
31
- apscheduler = "3.10.1"
32
- black = "23.11.0"
33
- click = "8.1.3"
34
- datasets = "2.14.5"
35
- huggingface-hub = ">=0.18.0"
36
- matplotlib = "3.8.4"
37
- numpy = "1.26.0"
38
- pandas = "2.2.2"
39
- plotly = "5.14.1"
40
- python-dateutil = "2.8.2"
41
- requests = "2.28.2"
42
- sentencepiece = "^0.2.0"
43
- tqdm = "4.65.0"
44
- transformers = "4.40.0"
45
- tokenizers = ">=0.15.0"
46
- gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
47
- gradio = " 4.20.0"
48
- isort = "^5.13.2"
49
- ruff = "^0.3.5"
50
- gradio-leaderboard = "0.0.8"
51
-
52
- [build-system]
53
- requires = ["poetry-core"]
54
- build-backend = "poetry.core.masonry.api"
 
1
+ [project]
2
+ name = "deathmatch-leaderboard"
3
+ version = "0.1.0"
4
+ description = "DeathMath Leaderboard - benchmark platform for evaluating LLM performance on complex Russian-language mathematics and physics problems"
5
+ requires-python = ">=3.10"
6
+ dependencies = [
7
+ "gradio[oauth]>=5.0.0",
8
+ "gradio-leaderboard>=0.0.8",
9
+ "huggingface-hub>=0.27.0",
10
+ "pandas>=2.3.0",
11
+ "numpy>=2.0.0",
12
+ "matplotlib>=3.10.0",
13
+ "plotly>=5.24.0",
14
+ "datasets>=3.2.0",
15
+ "requests>=2.32.0",
16
+ "tqdm>=4.67.0",
17
+ "python-dateutil>=2.9.0",
18
+ "click>=8.1.7",
19
+ "gradio-space-ci",
20
+ ]
21
+
22
+ [project.optional-dependencies]
23
+ dev = [
24
+ "ruff>=0.9.0",
25
+ ]
26
+
27
+ [build-system]
28
+ requires = ["hatchling"]
29
+ build-backend = "hatchling.build"
30
+
31
+ [tool.hatch.build.targets.wheel]
32
+ packages = ["src"]
33
+
34
  [tool.ruff]
35
  line-length = 120
36
+ target-version = "py310"
37
  include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
 
 
 
38
 
39
  [tool.ruff.lint]
40
+ select = ["E", "F", "I", "N", "W", "UP", "B", "C4", "PIE", "RET", "SIM", "ARG"]
41
+ ignore = ["E501"] # line too long handled by formatter
42
  fixable = ["ALL"]
 
43
 
44
+ [tool.ruff.format]
45
+ quote-style = "double"
46
+ indent-style = "space"
47
+ line-ending = "auto"
48
 
49
+ [tool.uv.sources]
50
+ gradio-space-ci = { git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3" }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt DELETED
@@ -1,23 +0,0 @@
1
- APScheduler==3.10.1
2
- black==23.11.0
3
- click==8.1.3
4
- datasets==2.14.5
5
- huggingface-hub>=0.18.0
6
- matplotlib==3.8.4
7
- numpy==1.26.0
8
- pandas==2.2.2
9
- plotly==5.14.1
10
- python-dateutil==2.8.2
11
- requests==2.28.2
12
- sentencepiece
13
- tqdm==4.65.0
14
- transformers==4.40.0
15
- tokenizers>=0.15.0
16
- gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/gradio-space-ci@0.2.3 # CI !!!
17
- gradio==4.20.0
18
- gradio_leaderboard==0.0.8
19
- tiktoken
20
- openai
21
- shortuuid
22
- httpx==0.25.2
23
- scikit-learn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/about.py CHANGED
@@ -1,4 +1,3 @@
1
- from src.display.utils import ModelType
2
 
3
  TITLE = """<h1 style="text-align:left;float:left; id="space-title">DeathMath Leaderboard</h1> <h3 style="text-align:left;float:left;"> Оценка моделей на сложных математических и физических задачах </h3>"""
4
 
 
 
1
 
2
  TITLE = """<h1 style="text-align:left;float:left; id="space-title">DeathMath Leaderboard</h1> <h3 style="text-align:left;float:left;"> Оценка моделей на сложных математических и физических задачах </h3>"""
3
 
src/display/utils.py CHANGED
@@ -1,10 +1,10 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
  import json
4
  import logging
 
5
  from datetime import datetime
6
- import pandas as pd
7
 
 
8
 
9
  # Configure logging
10
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
@@ -30,7 +30,7 @@ def parse_datetime(datetime_str):
30
  def load_json_data(file_path):
31
  """Safely load JSON data from a file."""
32
  try:
33
- with open(file_path, "r") as file:
34
  return json.load(file)
35
  except json.JSONDecodeError:
36
  print(f"Error reading JSON from {file_path}")
 
 
 
1
  import json
2
  import logging
3
+ from dataclasses import dataclass, make_dataclass
4
  from datetime import datetime
5
+ from enum import Enum
6
 
7
+ import pandas as pd
8
 
9
  # Configure logging
10
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
 
30
  def load_json_data(file_path):
31
  """Safely load JSON data from a file."""
32
  try:
33
+ with open(file_path) as file:
34
  return json.load(file)
35
  except json.JSONDecodeError:
36
  print(f"Error reading JSON from {file_path}")
src/gen/config/api_config.yaml DELETED
@@ -1,203 +0,0 @@
1
- # name: str
2
- # model_name: str
3
- # endpoints: default to null
4
- # - api_base: str
5
- # api_key: str optional (required if no api_key_ENV)
6
- # api_key_ENV: str optional (ENV name to store the token secret)
7
- # api_version: str optional (only for azure)
8
- # api_type: str
9
- # tokenizer: str optional (to optimize token limits)
10
- # parallel: int
11
-
12
- gpt-4-1106-preview:
13
- model_name: gpt-4-1106-preview
14
- endpoints:
15
- - api_base: https://cgiaura-openai-trainning.openai.azure.com
16
- api_key_ENV: GPT_4_TOKEN
17
- api_version: 2024-02-15-preview
18
- api_type: azure
19
- parallel: 5
20
-
21
- gpt-3.5-turbo-0125:
22
- model_name: gpt-3.5-turbo-0125
23
- endpoints:
24
- - api_base: https://api.openai.com/v1/
25
- api_key_ENV: GPT_3_TOKEN
26
- api_type: openai
27
- parallel: 6
28
-
29
- gpt-3.5-turbo-0125-ru-sys:
30
- model_name: gpt-3.5-turbo-0125
31
- endpoints:
32
- - api_base: https://api.openai.com/v1/
33
- api_key_ENV: GPT_3_TOKEN
34
- system_prompt: You are a helpful assistant. Answer on Russian.
35
- api_type: openai
36
- parallel: 6
37
-
38
- yandex_gpt_pro:
39
- model_name: yandexgpt
40
- endpoints:
41
- - catalog_id: b1gk1i41eeb97a5s68c7
42
- iam_token_ENV: YANDEX_GPT_TOKEN
43
- api_type: yandex
44
- parallel: 2
45
-
46
- gigachat_lite:
47
- model_name: GigaChat
48
- endpoints:
49
- auth_token_ENV: GIGACHAT_GPT_TOKEN
50
- api_type: gigachat
51
- parallel: 1
52
-
53
- gigachat_pro:
54
- model_name: GigaChat-Pro
55
- endpoints:
56
- auth_token_ENV: GIGACHAT_GPT_TOKEN
57
- api_type: gigachat
58
- parallel: 1
59
-
60
- meta-llama-3-70b-instruct-gptq:
61
- model_name: MaziyarPanahi/Meta-Llama-3-70B-Instruct-GPTQ
62
- endpoints:
63
- - api_base: http://localhost:8000/v1
64
- api_key: token-abc123
65
- api_type: openai
66
- parallel: 6
67
-
68
- snorkel-mistral-pairrm-dpo:
69
- model_name: snorkelai/Snorkel-Mistral-PairRM-DPO
70
- endpoints:
71
- - api_base: http://localhost:8000/v1
72
- api_key: token-abc123
73
- api_type: openai
74
- parallel: 6
75
-
76
- sfr-iterative-dpo-llama-3-8b-r:
77
- model_name: Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R
78
- endpoints:
79
- - api_base: http://localhost:8000/v1
80
- api_key: token-abc123
81
- api_type: openai
82
- parallel: 6
83
-
84
- openchat-3.5-0106:
85
- model_name: openchat/openchat-3.5-0106
86
- endpoints:
87
- - api_base: http://localhost:8000/v1
88
- api_key: token-abc123
89
- api_type: openai
90
- parallel: 6
91
-
92
- mixtral-8x7b-instruct-v0.1:
93
- model_name: LoneStriker/Mixtral-8x7B-Instruct-v0.1-HF
94
- endpoints:
95
- - api_base: http://localhost:8000/v1
96
- api_key: token-abc123
97
- api_type: openai
98
- parallel: 4
99
-
100
- neural-chat-7b-v3-3:
101
- model_name: Intel/neural-chat-7b-v3-3
102
- endpoints:
103
- - api_base: http://localhost:8000/v1
104
- api_key: token-abc123
105
- api_type: openai
106
- parallel: 6
107
-
108
- meta-llama-3-8b-instruct:
109
- model_name: meta-llama/Meta-Llama-3-8B-Instruct
110
- endpoints:
111
- - api_base: http://localhost:8000/v1
112
- api_key: token-abc123
113
- api_type: openai
114
- parallel: 6
115
-
116
- saiga_llama3_8b:
117
- model_name: IlyaGusev/saiga_llama3_8b
118
- endpoints:
119
- - api_base: http://localhost:8000/v1
120
- api_key: token-abc123
121
- api_type: openai
122
- parallel: 6
123
-
124
- hermes-2-pro-llama-3-8b:
125
- model_name: NousResearch/Hermes-2-Pro-Llama-3-8B
126
- endpoints:
127
- - api_base: http://localhost:8000/v1
128
- api_key: token-abc123
129
- api_type: openai
130
- parallel: 6
131
-
132
- dpopenhermes-7b:
133
- model_name: openaccess-ai-collective/DPOpenHermes-7B
134
- endpoints:
135
- - api_base: http://localhost:8000/v1
136
- api_key: token-abc123
137
- api_type: openai
138
- parallel: 6
139
-
140
- llama3-chatqa-1.5-8b:
141
- model_name: nvidia/Llama3-ChatQA-1.5-8B
142
- endpoints:
143
- - api_base: http://localhost:8000/v1
144
- api_key: token-abc123
145
- api_type: openai
146
- parallel: 6
147
-
148
- hermes-2-pro-mistral-7b:
149
- model_name: NousResearch/Hermes-2-Pro-Mistral-7B
150
- endpoints:
151
- - api_base: http://localhost:8000/v1
152
- api_key: token-abc123
153
- api_type: openai
154
- parallel: 6
155
-
156
- suzume-llama-3-8b-multilingual:
157
- model_name: lightblue/suzume-llama-3-8B-multilingual
158
- endpoints:
159
- - api_base: http://localhost:8000/v1
160
- api_key: token-abc123
161
- api_type: openai
162
- parallel: 6
163
-
164
- vikhr-7b-instruct_0.4:
165
- model_name: Vikhrmodels/Vikhr-7B-instruct_0.4
166
- endpoints:
167
- - api_base: http://localhost:8000/v1
168
- api_key: token-abc123
169
- api_type: openai
170
- parallel: 6
171
-
172
- vikhr-it-5.2-fp16-cp:
173
- model_name: Vikhrmodels/it-5.2-fp16-cp
174
- endpoints:
175
- - api_base: http://localhost:8000/v1
176
- api_key: token-abc123
177
- api_type: openai
178
- system_prompt: Ты — Вихрь, русскоязычный ассистент.
179
- parallel: 6
180
-
181
- starling-lm-7b-beta:
182
- model_name: Nexusflow/Starling-LM-7B-beta
183
- endpoints:
184
- - api_base: http://localhost:8000/v1
185
- api_key: token-abc123
186
- api_type: openai
187
- parallel: 6
188
-
189
- c4ai-command-r-v01:
190
- model_name: CohereForAI/c4ai-command-r-v01
191
- endpoints:
192
- - api_base: http://localhost:8000/v1
193
- api_key: token-abc123
194
- api_type: openai
195
- parallel: 6
196
-
197
- starcoder2-15b-instruct-v0.1:
198
- model_name: bigcode/starcoder2-15b-instruct-v0.1
199
- endpoints:
200
- - api_base: http://localhost:8000/v1
201
- api_key: token-abc123
202
- api_type: openai
203
- parallel: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/config/judge_config-ru.yaml DELETED
@@ -1,35 +0,0 @@
1
- name: judgment config file for Arena Hard
2
-
3
- bench_name: arena-hard-v0.1
4
-
5
- # Arena Hard default
6
- judge_model: gpt-4-1106-preview
7
- reference: False # Optional
8
- ref_model: null
9
-
10
- baseline: True
11
- baseline_model: gpt-3.5-turbo-0125
12
-
13
- pairwise: True
14
- temperature: 0
15
- max_tokens: 4096
16
-
17
- regex_pattern: \[\[([AB<>=]+)\]\]
18
-
19
- system_prompt: "Пожалуйста, веди себя как беспристрастный судья и оцени качество ответов, предоставленных двумя AI ассистентами на пользовательский запрос, представленный ниже. Тебе будут даны ответы ассистента А и ассистента В. Твоя задача — оценить, чей ответ лучше.\n\nНачни свою оценку, сгенерировав собственный ответ на запрос. Ты должен предоставить свои ответы, прежде чем судить об ответах других AI.\n\nПри оценке ответов ассистентов сравни ответы обоих ассистентов со своим ответом. Ты должен идентифицировать и исправить любые ошибки или неточности.\n\nЗатем рассмотри, являются ли ответы ассистентов грамотными, полезными, релевантными и краткими. Грамотность означает, что ответ использует преимущественно русский язык и в нем отсутствуют языковые ошибки. Полезность означает, что ответ правильно реагирует на запрос или следует инструкциям. Обрати внимание, когда в запросе пользователя есть какая-либо неоднозначность или более одной интерпретации, полезнее и уместнее запрашивать уточнения или дополнительную информацию у пользователя, чем предоставлять ответ на основе предположений. Релевантность означает, что все части ответа тесно связаны или соотвествуют тому, что спрашивается. Краткость означает, что ответ ясен и не многословен или избыточен.\n\nЗатем рассмотри креативность и новизну ответов ассистентов, когда это необходимо. Наконец, определи любую отсутствующую важную информацию в ответах ассистентов, которую было бы полезно включить при ответе на пользовательский запрос.\n\nПосле предоставления твоего объяснения, ты должен выдать только один из следующих вариантов как твое окончательное решение с меткой:\n\n1. Ассистент A значительно лучше: [[A>>B]]\n2. Ассистент A немного лучше: [[A>B]]\n3. Ничья, примерно одинаково: [[A=B]]\n4. Ассистент B немного лучше: [[B>A]]\n5. Ассистент B значительно лучше: [[B>>A]]\n\nПример вывода: \"Мой окончательный вердикт — ничья: [[A=B]]\"."
20
-
21
- prompt_template: ["<|Запрос пользователя|>\n{question_1}\n\n<|Начало ответа ассистента A|>\n{answer_1}\n<|Конец ответа ассистента A|>\n\n<|Начало ответа ассистента B|>\n{answer_2}\n<|Конец ответа ассистента B|>"]
22
-
23
- # Add your model below for evaluation
24
- model_list:
25
- - meta-llama-3-8b-instruct
26
- - meta-llama-3-8b-instruct-ru-guided-2
27
- - saiga_llama3_8b
28
- - suzume-llama-3-8B-multilingual
29
- - c4ai-command-r-v01
30
- - starling-lm-7b-beta
31
- - openchat-3.5-0106
32
- - hermes-2-pro-llama-3-8b
33
- - hermes-2-pro-mistral-7b
34
- - starcoder2-15b-instruct-v0.1
35
- - gpt-4-1106-preview
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/config/judge_config.yaml DELETED
@@ -1,40 +0,0 @@
1
- name: judgment config file for Arena Hard
2
-
3
- bench_name: arena-hard-v0.1
4
-
5
- # Arena Hard default
6
- judge_model: gpt-4-1106-preview
7
- reference: False # Optional
8
- ref_model: null
9
-
10
- baseline: True
11
- baseline_model: gpt-3.5-turbo-0125
12
-
13
- pairwise: True
14
- temperature: 0
15
- max_tokens: 4096
16
-
17
- regex_pattern: \[\[([AB<>=]+)\]\]
18
-
19
- system_prompt: "Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user prompt displayed below. You will be given assistant A's answer and assistant B's answer. Your job is to evaluate which assistant's answer is better.\n\nBegin your evaluation by describing the details that need to be taken into account when responding to this prompt. You must provide your ideas before judging any answers.\n\nWhen evaluating the assistants' answers, compare both assistants' answers with your ideas. You must identify and correct any mistakes or inaccurate information.\n\nThen consider if the assistant's answers are helpful, relevant, concise and linguistically acceptable. Helpful means the answer correctly responds to the prompt or follows the instructions. Note when user prompt has any ambiguity or more than one interpretation, it is more helpful and appropriate to ask for clarifications or more information from the user than providing an answer based on assumptions. Relevant means all parts of the response closely connect or are appropriate to what is being asked. Concise means the response is clear and not verbose or excessive. Linguistically acceptable means that the response is given mainly in Russian language and there are no grammatical errors in it.\n\nThen consider the creativity and novelty of the assistant's answers when needed. Finally, identify any missing important information in the assistants' answers that would be beneficial to include when responding to the user prompt.\n\nAfter providing your explanation, you must output only one of the following choices as your final verdict with a label:\n\n1. Assistant A is significantly better: [[A>>B]]\n2. Assistant A is slightly better: [[A>B]]\n3. Tie, relatively the same: [[A=B]]\n4. Assistant B is slightly better: [[B>A]]\n5. Assistant B is significantly better: [[B>>A]]\n\nExample output: \"My final verdict is tie: [[A=B]]\"."
20
-
21
- prompt_template: ["<|User Prompt|>\n{question_1}\n\n<|The Start of Assistant A's Answer|>\n{answer_1}\n<|The End of Assistant A's Answer|>\n\n<|The Start of Assistant B's Answer|>\n{answer_2}\n<|The End of Assistant B's Answer|>"]
22
-
23
- # Add your model below for evaluation
24
- model_list:
25
- - meta-llama-3-8b-instruct
26
- - saiga_llama3_8b
27
- - suzume-llama-3-8b-multilingual
28
- - yandex_gpt_pro
29
- - c4ai-command-r-v01
30
- - starling-lm-7b-beta
31
- - openchat-3.5-0106
32
- - snorkel-mistral-pairrm-dpo
33
- - neural-chat-7b-v3-3
34
- - gigachat_lite
35
- - gigachat_pro
36
- - vikhr-7b-instruct_0.4
37
- - hermes-2-pro-llama-3-8b
38
- - gpt-4-1106-preview
39
- - llama3-chatqa-1.5-8b
40
- - vikhr-it-5.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/gen_answer.py DELETED
@@ -1,202 +0,0 @@
1
- """Generate answers using api endpoints.
2
-
3
- Usage:
4
- python gen_api_answer --parallel 32
5
- """
6
- import argparse
7
- import concurrent.futures
8
- import json
9
- import os
10
- import time
11
-
12
- import shortuuid
13
- import tiktoken
14
- import tqdm
15
- from utils import (
16
- OPENAI_MODEL_LIST,
17
- chat_completion_anthropic,
18
- chat_completion_cohere,
19
- chat_completion_gemini,
20
- chat_completion_gigachat,
21
- chat_completion_mistral,
22
- chat_completion_openai,
23
- chat_completion_openai_azure,
24
- chat_completion_yandex,
25
- get_endpoint,
26
- load_model_answers,
27
- load_questions,
28
- make_config,
29
- reorg_answer_file,
30
- temperature_config,
31
- )
32
-
33
-
34
- def get_answer(
35
- question: dict,
36
- model: str,
37
- endpoint_info: dict,
38
- num_choices: int,
39
- max_tokens: int,
40
- temperature: float,
41
- answer_file: str,
42
- api_dict: dict,
43
- ):
44
- if question["category"] in temperature_config:
45
- temperature = temperature_config[question["category"]]
46
-
47
- api_type = endpoint_info["api_type"]
48
-
49
- conv = []
50
-
51
- if "system_prompt" in endpoint_info.keys():
52
- conv.append({"role": "system", "content": endpoint_info["system_prompt"]})
53
- elif model in OPENAI_MODEL_LIST:
54
- conv.append({"role": "system", "content": "You are a helpful assistant."})
55
-
56
- encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
57
- choices = []
58
- for i in range(num_choices):
59
- turns = []
60
- for j in range(len(question["turns"])):
61
- conv.append({"role": "user", "content": question["turns"][j]["content"]})
62
- if api_type == "anthropic":
63
- output = chat_completion_anthropic(
64
- model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
65
- )
66
- elif api_type == "mistral":
67
- output = chat_completion_mistral(
68
- model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
69
- )
70
- elif api_type == "yandex":
71
- output = chat_completion_yandex(
72
- model=endpoint_info["model_name"],
73
- messages=conv,
74
- temperature=temperature,
75
- max_tokens=max_tokens,
76
- api_dict=api_dict,
77
- )
78
- elif api_type == "gigachat":
79
- output = chat_completion_gigachat(
80
- model=endpoint_info["model_name"],
81
- messages=conv,
82
- temperature=temperature,
83
- max_tokens=max_tokens,
84
- api_dict=api_dict,
85
- )
86
- elif api_type == "gemini":
87
- output = chat_completion_gemini(
88
- model=endpoint_info["model_name"],
89
- messages=question["turns"][j]["content"],
90
- temperature=temperature,
91
- max_tokens=max_tokens,
92
- )
93
- elif api_type == "azure":
94
- output = chat_completion_openai_azure(
95
- model=endpoint_info["model_name"],
96
- messages=conv,
97
- temperature=temperature,
98
- max_tokens=max_tokens,
99
- api_dict=api_dict,
100
- )
101
- elif api_type == "cohere":
102
- output = chat_completion_cohere(
103
- model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
104
- )
105
- else:
106
- output = chat_completion_openai(
107
- model=endpoint_info["model_name"],
108
- messages=conv,
109
- temperature=temperature,
110
- max_tokens=max_tokens,
111
- api_dict=api_dict,
112
- )
113
- conv.append({"role": "assistant", "content": output})
114
-
115
- turns.append({"content": output, "token_len": len(encoding.encode(output))})
116
- choices.append({"index": i, "turns": turns})
117
-
118
- # Dump answers
119
- ans = {
120
- "question_id": question["question_id"],
121
- "answer_id": shortuuid.uuid(),
122
- "model_id": model,
123
- "choices": choices,
124
- "tstamp": time.time(),
125
- }
126
-
127
- os.makedirs(os.path.dirname(answer_file), exist_ok=True)
128
- with open(answer_file, "a") as fout:
129
- fout.write(json.dumps(ans) + "\n")
130
-
131
-
132
- if __name__ == "__main__":
133
- parser = argparse.ArgumentParser()
134
- parser.add_argument("--setting-file", type=str, default="config/gen_answer_config.yaml")
135
- parser.add_argument("--endpoint-file", type=str, default="config/api_config.yaml")
136
- args = parser.parse_args()
137
-
138
- settings = make_config(args.setting_file)
139
- endpoint_list = make_config(args.endpoint_file)
140
-
141
- existing_answer = load_model_answers(os.path.join("data", settings["bench_name"], "model_answers", "internal"))
142
-
143
- print(settings)
144
-
145
- for model in settings["model_list"]:
146
- assert model in endpoint_list
147
- endpoint_info = endpoint_list[model]
148
-
149
- question_file = os.path.join("data", settings["bench_name"], "question.jsonl")
150
- questions = load_questions(question_file)
151
-
152
- answer_file = os.path.join("data", settings["bench_name"], "model_answers", f"{model}.jsonl")
153
- print(f"Output to {answer_file}")
154
-
155
- if "parallel" in endpoint_info:
156
- parallel = endpoint_info["parallel"]
157
- else:
158
- parallel = 1
159
-
160
- # We want to maximizes the number of tokens generate per answer: max_tokens = specified token # - input tokens #
161
- if "tokenizer" in endpoint_info:
162
- question_list = [question["turns"][0]["content"] for question in questions]
163
- if model in OPENAI_MODEL_LIST:
164
- tokenizer = tiktoken.encoding_for_model(endpoint_info["model_name"])
165
- tokens = [tokenizer.encode(prompt) for prompt in question_list]
166
- max_tokens = [(settings["max_tokens"] - len(token) - 100) for token in tokens]
167
- else:
168
- from transformers import AutoTokenizer
169
-
170
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
171
- tokenizer = AutoTokenizer.from_pretrained(endpoint_info["tokenizer"])
172
-
173
- tokens = tokenizer(question_list)
174
- max_tokens = [(settings["max_tokens"] - len(prompt) - 300) for prompt in tokens["input_ids"]]
175
- else:
176
- max_tokens = [settings["max_tokens"]] * len(questions)
177
-
178
- with concurrent.futures.ThreadPoolExecutor(max_workers=parallel) as executor:
179
- futures = []
180
- count = 0
181
- for index, question in enumerate(questions):
182
- if model in existing_answer and question["question_id"] in existing_answer[model]:
183
- count += 1
184
- continue
185
- future = executor.submit(
186
- get_answer,
187
- question,
188
- model,
189
- endpoint_info,
190
- settings["num_choices"],
191
- max_tokens[index],
192
- settings["temperature"],
193
- answer_file,
194
- get_endpoint(endpoint_info["endpoints"]),
195
- )
196
- futures.append(future)
197
- if count > 0:
198
- print(f"{count} number of existing answers")
199
- for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
200
- future.result()
201
-
202
- reorg_answer_file(answer_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/gen_judgment.py DELETED
@@ -1,221 +0,0 @@
1
- import argparse
2
- import concurrent.futures
3
- import glob
4
- import json
5
- import os
6
- import re
7
-
8
- import huggingface_hub
9
- from tqdm import tqdm
10
- from utils import (
11
- chat_completion_anthropic,
12
- chat_completion_openai,
13
- chat_completion_openai_azure,
14
- get_endpoint,
15
- load_model_answers,
16
- load_questions,
17
- make_config,
18
- )
19
-
20
-
21
- def get_score(judgment, pattern, pairwise=True):
22
- matches = pattern.findall(judgment)
23
- matches = [m for m in matches if m != ""]
24
- if len(set(matches)) == 0:
25
- return None, True
26
- elif len(set(matches)) == 1:
27
- if pairwise:
28
- return matches[0].strip("\n"), False
29
- return int(matches[0])
30
- else:
31
- return None, False
32
-
33
-
34
- # get answer from model
35
- def get_answer(model, conv, temperature, max_tokens, endpoint_dict=None):
36
- api_dict = get_endpoint(endpoint_dict["endpoints"])
37
-
38
- if endpoint_dict["api_type"] == "anthropic":
39
- output = chat_completion_anthropic(model, conv, temperature, max_tokens)
40
- elif endpoint_dict["api_type"] == "azure":
41
- output = chat_completion_openai_azure(model, conv, temperature, max_tokens, api_dict)
42
- else:
43
- output = chat_completion_openai(model, conv, temperature, max_tokens, api_dict)
44
- return output
45
-
46
-
47
- def judgment(**args):
48
- question = args["question"]
49
- answer = args["answer"]
50
- reference = args["reference"]
51
- baseline = args["baseline_answer"]
52
- configs = args["configs"]
53
- output_file = args["output_file"]
54
- model = configs["judge_model"]
55
-
56
- num_games = 2 if configs["pairwise"] else 1
57
-
58
- output = {"question_id": question["question_id"], "model": answer["model_id"], "judge": model, "games": []}
59
-
60
- for game in range(num_games):
61
- conv = [{"role": "system", "content": configs["system_prompt"]}]
62
-
63
- for template in configs["prompt_template"]:
64
- prompt_args = {}
65
-
66
- for i, turn in enumerate(question["turns"]):
67
- prompt_args[f"question_{i+1}"] = turn["content"]
68
- base = 1
69
-
70
- if baseline:
71
- if game % 2 == 1: # swap position
72
- temp = baseline
73
- baseline = answer
74
- answer = temp
75
-
76
- for i, turn in enumerate(baseline["choices"][0]["turns"]):
77
- prompt_args[f"answer_{i+1}"] = turn["content"]
78
- base += 1
79
- if answer:
80
- for i, turn in enumerate(answer["choices"][0]["turns"]):
81
- prompt_args[f"answer_{i+base}"] = turn["content"]
82
-
83
- if reference:
84
- for j, ref_answer in enumerate(reference):
85
- for i, turn in enumerate(ref_answer["choices"][0]["turns"]):
86
- prompt_args[f"ref_answer_{i+j+1}"] = turn["content"]
87
-
88
- user_prompt = template.format(**prompt_args)
89
- conv.append({"role": "user", "content": user_prompt})
90
-
91
- judgment = ""
92
- for _ in range(2):
93
- new_judgment = get_answer(
94
- model,
95
- conv,
96
- configs["temperature"],
97
- configs["max_tokens"],
98
- args["endpoint_dict"],
99
- )
100
-
101
- judgment += "\n" + new_judgment
102
-
103
- score, try_again = get_score(judgment, args["regex_pattern"])
104
-
105
- conv.append({"role": "assistant", "content": new_judgment})
106
-
107
- if not try_again:
108
- break
109
-
110
- conv.append(
111
- {"role": "user", "content": "continue your judgment and finish by outputting a final verdict label"}
112
- )
113
-
114
- result = {"user_prompt": conv[1]["content"], "judgment": judgment, "score": score}
115
- output["games"].append(result)
116
-
117
- with open(output_file, "a") as f:
118
- f.write(json.dumps(output, ensure_ascii=False) + "\n")
119
- huggingface_hub.HfApi().upload_file(
120
- output_file,
121
- path_in_repo=f'model_judgment/{configs['judge_model']}/{output_file.split('/')[-1]}',
122
- repo_id="Vikhrmodels/openbench-eval",
123
- repo_type="dataset",
124
- )
125
-
126
-
127
- if __name__ == "__main__":
128
- parser = argparse.ArgumentParser()
129
- parser.add_argument("--setting-file", type=str, default="./config/judge_config.yaml")
130
- parser.add_argument("--endpoint-file", type=str, default="./config/api_config.yaml")
131
- args = parser.parse_args()
132
- print(args)
133
-
134
- configs = make_config(args.setting_file)
135
- endpoint_list = make_config(args.endpoint_file)
136
-
137
- print(
138
- f'judge model: {configs["judge_model"]}, baseline: {configs["baseline"]}, baseline model: {configs["baseline_model"]}, reference: {configs["reference"]}, '
139
- + f'reference models: {configs["ref_model"]}, temperature: {configs["temperature"]}, max tokens: {configs["max_tokens"]}, pairwise: {configs["pairwise"]}'
140
- )
141
-
142
- if configs["regex_pattern"]:
143
- pattern = re.compile(configs["regex_pattern"])
144
-
145
- question_file = os.path.join("./data", configs["bench_name"], "question.jsonl")
146
- external_dir = os.path.join("./data", configs["bench_name"], "model_answers/external")
147
- internal_dir = os.path.join("./data", configs["bench_name"], "model_answers/internal")
148
- ref_answer_dir = os.path.join("data", configs["bench_name"], "reference_answer")
149
-
150
- questions = load_questions(question_file)
151
- model_answers_external = load_model_answers(external_dir)
152
- model_answers_internal = load_model_answers(internal_dir)
153
-
154
- # internal has priority
155
- model_answers = {**model_answers_external, **model_answers_internal}
156
-
157
- # if user choose a set of models, only judge those models
158
- models = [
159
- model.split("/")[-1].split(".")[0]
160
- for model in glob.glob("./data/arena-hard-v0.1/model_answers/external/*.jsonl")
161
- ]
162
-
163
- ref_answers = None
164
- if configs["reference"]:
165
- ref_answers = load_model_answers(ref_answer_dir)
166
- ref_answers = [ref_answers[model] for model in configs["ref_model"]]
167
-
168
- output_files = {}
169
- output_dir = f"data/{configs['bench_name']}/model_judgment/{configs['judge_model']}"
170
- for model in models:
171
- output_files[model] = os.path.join(
172
- output_dir,
173
- f"{model}.jsonl",
174
- )
175
-
176
- for output_file in output_files.values():
177
- os.makedirs(os.path.dirname(output_file), exist_ok=True)
178
-
179
- existing_judgments = load_model_answers(output_dir)
180
-
181
- endpoint_info = endpoint_list[configs["judge_model"]]
182
-
183
- with concurrent.futures.ThreadPoolExecutor(max_workers=endpoint_info["parallel"]) as executor:
184
- futures = []
185
- for model in models:
186
- count = 0
187
- for question in questions[:2]:
188
- question_id = question["question_id"]
189
-
190
- kwargs = {}
191
- kwargs["question"] = question
192
- if model in model_answers and question_id not in model_answers[model]:
193
- print(f"Warning: {model} answer to {question['question_id']} cannot be found.")
194
- continue
195
-
196
- if model in existing_judgments and question_id in existing_judgments[model]:
197
- count += 1
198
- continue
199
-
200
- kwargs["answer"] = model_answers[model][question_id]
201
- if ref_answers:
202
- kwargs["reference"] = [ref_answer[question_id] for ref_answer in ref_answers]
203
- assert len(kwargs["reference"]) == len(configs["ref_model"])
204
- else:
205
- kwargs["reference"] = None
206
- if configs["baseline"]:
207
- kwargs["baseline_answer"] = model_answers[configs["baseline_model"]][question_id]
208
- else:
209
- kwargs["baseline_answer"] = None
210
- kwargs["configs"] = configs
211
- kwargs["endpoint_dict"] = endpoint_info
212
- kwargs["output_file"] = output_files[model]
213
- kwargs["regex_pattern"] = pattern
214
- future = executor.submit(judgment, **kwargs)
215
- futures.append(future)
216
-
217
- if count > 0:
218
- print(f"{count} number of existing judgments")
219
-
220
- for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
221
- future.result()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/show_result.py DELETED
@@ -1,279 +0,0 @@
1
- import argparse
2
- import datetime
3
- import math
4
- import os
5
- from collections import defaultdict
6
- from glob import glob
7
-
8
- import numpy as np
9
- import pandas as pd
10
- import plotly.express as px
11
- from sklearn.linear_model import LogisticRegression
12
- from tqdm import tqdm
13
- from utils import load_model_answers
14
-
15
- from src.envs import HF_TOKEN_PRIVATE
16
-
17
-
18
- def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000):
19
- models = pd.concat([df["model_a"], df["model_b"]]).unique()
20
- models = pd.Series(np.arange(len(models)), index=models)
21
-
22
- # duplicate battles
23
- df = pd.concat([df, df], ignore_index=True)
24
- p = len(models.index)
25
- n = df.shape[0]
26
-
27
- X = np.zeros([n, p])
28
- X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
29
- X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
30
-
31
- # one A win => two A win
32
- Y = np.zeros(n)
33
- Y[df["winner"] == "model_a"] = 1.0
34
-
35
- # one tie => one A win + one B win
36
- # find tie + tie (both bad) index
37
- tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
38
- tie_idx[len(tie_idx) // 2 :] = False
39
- Y[tie_idx] = 1.0
40
-
41
- lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-8)
42
- lr.fit(X, Y)
43
-
44
- elo_scores = SCALE * lr.coef_[0] + INIT_RATING
45
-
46
- # set anchor as gpt-3.5-turbo-0125 = 1000
47
- if "gpt-3.5-turbo-0125" in models.index:
48
- elo_scores += 1000 - elo_scores[models["gpt-3.5-turbo-0125"]]
49
- return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
50
-
51
-
52
- def get_bootstrap_result(battles, func_compute_elo, num_round):
53
- rows = []
54
- for i in tqdm(range(num_round), desc="bootstrap"):
55
- rows.append(func_compute_elo(battles.sample(frac=1.0, replace=True)))
56
- df = pd.DataFrame(rows)
57
- return df[df.median().sort_values(ascending=False).index]
58
-
59
-
60
- def preety_print_two_ratings(ratings_1, ratings_2, column_names):
61
- df = (
62
- pd.DataFrame(
63
- [[n, ratings_1[n], ratings_2[n]] for n in ratings_1.keys()],
64
- columns=["Model", column_names[0], column_names[1]],
65
- )
66
- .sort_values(column_names[0], ascending=False)
67
- .reset_index(drop=True)
68
- )
69
- df[column_names[0]] = (df[column_names[0]] + 0.5).astype(int)
70
- df[column_names[1]] = (df[column_names[1]] + 0.5).astype(int)
71
- df.index = df.index + 1
72
- return df
73
-
74
-
75
- def visualize_bootstrap_scores(df, title):
76
- bars = (
77
- pd.DataFrame(dict(lower=df.quantile(0.025), rating=df.quantile(0.5), upper=df.quantile(0.975)))
78
- .reset_index(names="model")
79
- .sort_values("rating", ascending=False)
80
- )
81
- bars["error_y"] = bars["upper"] - bars["rating"]
82
- bars["error_y_minus"] = bars["rating"] - bars["lower"]
83
- bars["rating_rounded"] = np.round(bars["rating"], 2)
84
- fig = px.scatter(
85
- bars,
86
- x="model",
87
- y="rating",
88
- error_y="error_y",
89
- error_y_minus="error_y_minus",
90
- text="rating_rounded",
91
- title=title,
92
- )
93
- fig.update_layout(xaxis_title="Model", yaxis_title="Rating", height=600)
94
- return fig
95
-
96
-
97
- def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000):
98
- names = sorted(list(elo_ratings.keys()))
99
- wins = defaultdict(lambda: defaultdict(lambda: 0))
100
- for a in names:
101
- for b in names:
102
- ea = 1 / (1 + BASE ** ((elo_ratings[b] - elo_ratings[a]) / SCALE))
103
- wins[a][b] = ea
104
- wins[b][a] = 1 - ea
105
-
106
- data = {a: [wins[a][b] if a != b else np.NAN for b in names] for a in names}
107
-
108
- df = pd.DataFrame(data, index=names)
109
- df.index.name = "model_a"
110
- df.columns.name = "model_b"
111
- return df.T
112
-
113
-
114
- def get_win_rate_column(df, column, baseline="gpt-3.5-turbo-0125"):
115
- to_dict = df[["model", column]].set_index("model").to_dict()[column]
116
- win_rate_table = predict_win_rate(to_dict)
117
- return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x * 100, 2))
118
-
119
-
120
- def get_battles_from_judgment(judge_name, first_game_only=False, WEIGHT=3):
121
- arena_hard_battles = pd.DataFrame()
122
-
123
- print("Turning judgment results into battles...")
124
-
125
- directory = f"data/arena-hard-v0.1/model_judgement/{judge_name}"
126
- assert os.path.exists(directory)
127
- for file in tqdm(glob(f"{directory}/*jsonl")):
128
- df = pd.read_json(file, lines=True)
129
-
130
- for _, row in df.iterrows():
131
- # game 1
132
- output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
133
-
134
- game = row["games"][0]
135
-
136
- weight = 1
137
- if game["score"] == "A=B":
138
- output["winner"] = "tie"
139
- elif game["score"] == "A>B":
140
- output["winner"] = "model_a"
141
- elif game["score"] == "A>>B":
142
- output["winner"] = "model_a"
143
- weight = WEIGHT
144
- elif game["score"] == "B>A":
145
- output["winner"] = "model_b"
146
- elif game["score"] == "B>>A":
147
- output["winner"] = "model_b"
148
- weight = WEIGHT
149
- else:
150
- weight = 0
151
-
152
- if weight:
153
- arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
154
-
155
- if not first_game_only:
156
- # game 2
157
- output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
158
-
159
- game = row["games"][1]
160
-
161
- weight = 1
162
- if game["score"] == "A=B":
163
- output["winner"] = "tie"
164
- elif game["score"] == "A>B":
165
- output["winner"] = "model_b"
166
- elif game["score"] == "A>>B":
167
- output["winner"] = "model_b"
168
- weight = WEIGHT
169
- elif game["score"] == "B>A":
170
- output["winner"] = "model_a"
171
- elif game["score"] == "B>>A":
172
- output["winner"] = "model_a"
173
- weight = WEIGHT
174
- else:
175
- weight = 0
176
-
177
- if weight:
178
- arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
179
- arena_hard_battles.to_json("data/arena_hard_battles.jsonl", lines=True, orient="records")
180
- return arena_hard_battles
181
-
182
-
183
- if __name__ == "__main__":
184
- parser = argparse.ArgumentParser()
185
- parser.add_argument("--bench-name", type=str, default="arena-hard-v0.1")
186
- parser.add_argument("--judge-name", type=str, default="gpt-4-1106-preview")
187
- parser.add_argument("--baseline", type=str, default="gpt-3.5-turbo-0125")
188
- parser.add_argument("--load-battles", action="store_true")
189
- parser.add_argument("--load-bootstrap", action="store_true")
190
- parser.add_argument("--show-elo", action="store_true")
191
- parser.add_argument("--weight", type=int, default=3)
192
- parser.add_argument("--num-rounds", type=int, default=100)
193
- parser.add_argument("--output", action="store_true")
194
- parser.add_argument("--first-game-only", action="store_true")
195
- args = parser.parse_args()
196
- print(args)
197
- assert not args.load_bootstrap or (
198
- args.load_battles and args.load_bootstrap
199
- ), "If loading prexisting bootstrapping data, you must also load preexisting battles."
200
-
201
- answer_dir = os.path.join("data", args.bench_name, "model_answers/external")
202
- model_answers = load_model_answers(answer_dir)
203
-
204
- if args.load_battles:
205
- assert os.path.exists("data/arena_hard_battles.jsonl")
206
- battles = pd.read_json("data/arena_hard_battles.jsonl", lines=True)
207
- else:
208
- battles = get_battles_from_judgment(args.judge_name, args.first_game_only, args.weight)
209
-
210
- bootstrap_online_elo = compute_mle_elo(battles)
211
-
212
- if args.load_bootstrap:
213
- bootstrap_elo_lu = pd.read_json("data/bootstrapping_results.jsonl", lines=True)
214
- else:
215
- np.random.seed(42)
216
- bootstrap_elo_lu = get_bootstrap_result(battles, compute_mle_elo, args.num_rounds)
217
- bootstrap_elo_lu.to_json("data/bootstrapping_results.jsonl", lines=True, orient="records")
218
-
219
- stats = pd.DataFrame()
220
- stats["results"] = None
221
- stats["results"] = stats["results"].astype("object")
222
-
223
- for i, model in enumerate(bootstrap_online_elo.index):
224
- assert model in bootstrap_elo_lu.columns
225
-
226
- stats.at[i, "model"] = model
227
- stats.at[i, "score"] = bootstrap_online_elo[model]
228
- stats.at[i, "lower"] = np.percentile(bootstrap_elo_lu[model], 2.5)
229
- stats.at[i, "upper"] = np.percentile(bootstrap_elo_lu[model], 97.5)
230
-
231
- length = 0
232
- if model in model_answers:
233
- for _, row in model_answers[model].items():
234
- turn = row["choices"][0]["turns"][0]
235
- length += turn["token_len"]
236
- length /= len(model_answers[model])
237
-
238
- stats.at[i, "avg_tokens"] = int(length)
239
- stats.at[i, "results"] = bootstrap_elo_lu[model].tolist()
240
-
241
- if not args.show_elo:
242
- stats.sort_values(by="model", inplace=True)
243
- stats["score"] = get_win_rate_column(stats, "score", args.baseline).tolist()
244
- stats["lower"] = get_win_rate_column(stats, "lower", args.baseline).tolist()
245
- stats["upper"] = get_win_rate_column(stats, "upper", args.baseline).tolist()
246
- decimal = 1
247
- else:
248
- decimal = 0
249
- stats = stats.astype({"score": int, "lower": int, "upper": int})
250
-
251
- stats.sort_values(by="score", ascending=False, inplace=True)
252
- for _, row in stats.iterrows():
253
- interval = str((round(row["lower"] - row["score"], decimal), round(row["upper"] - row["score"], decimal)))
254
- print(
255
- f"{row['model'] : <30} | score: {round(row['score'], decimal) : ^5} | 95% CI: {interval : ^12} | average #tokens: {int(row['avg_tokens'])}"
256
- )
257
-
258
- if args.output:
259
- cur_date = datetime.datetime.now()
260
- date_str = cur_date.strftime("%Y%m%d")
261
- json_file_name = f"arena_hard_leaderboard_{date_str}.json"
262
- stats.to_json(json_file_name, orient="records", indent=4)
263
- import huggingface_hub
264
-
265
- huggingface_hub.HfApi().upload_file(
266
- path_or_fileobj=json_file_name,
267
- path_in_repo="leaderboard.json",
268
- repo_id="Vikhrmodels/arena-leaderboard-metainfo",
269
- repo_type="dataset",
270
- token=HF_TOKEN_PRIVATE,
271
- )
272
-
273
- huggingface_hub.HfApi().upload_file(
274
- path_or_fileobj=json_file_name,
275
- path_in_repo=f"leaderboard_logs/{json_file_name}",
276
- repo_id="Vikhrmodels/arena-leaderboard-metainfo",
277
- repo_type="dataset",
278
- token=HF_TOKEN_PRIVATE,
279
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/gen/utils.py DELETED
@@ -1,375 +0,0 @@
1
- import json
2
- import os
3
- import random
4
- import time
5
- from glob import glob
6
-
7
- import yaml
8
-
9
- # API setting constants
10
- API_MAX_RETRY = 16
11
- API_RETRY_SLEEP = 10
12
- API_ERROR_OUTPUT = "$ERROR$"
13
-
14
-
15
- OPENAI_MODEL_LIST = (
16
- "gpt-3.5-turbo",
17
- "gpt-3.5-turbo-0301",
18
- "gpt-3.5-turbo-0613",
19
- "gpt-3.5-turbo-0613-verbose",
20
- "gpt-3.5-turbo-1106",
21
- "gpt-3.5-turbo-0125",
22
- "gpt-4",
23
- "gpt-4-0314",
24
- "gpt-4-0613",
25
- "gpt-4-turbo",
26
- "gpt-4-1106-preview",
27
- "gpt-4-0125-preview",
28
- )
29
-
30
-
31
- temperature_config = {
32
- "writing": 0.7,
33
- "roleplay": 0.7,
34
- "extraction": 0.0,
35
- "math": 0.0,
36
- "coding": 0.0,
37
- "reasoning": 0.0,
38
- "stem": 0.1,
39
- "humanities": 0.1,
40
- }
41
-
42
-
43
- def load_questions(question_file: str):
44
- """Load questions from a file."""
45
- questions = []
46
- with open(question_file, "r") as ques_file:
47
- for line in ques_file:
48
- if line:
49
- questions.append(json.loads(line))
50
- return questions
51
-
52
-
53
- def load_model_answers(answer_dir: str):
54
- """Load model answers.
55
-
56
- The return value is a python dict of type:
57
- Dict[model_name: str -> Dict[question_id: int -> answer: dict]]
58
- """
59
- filenames = glob(os.path.join(answer_dir, "*.jsonl"))
60
- filenames.sort()
61
- model_answers = {}
62
-
63
- for filename in filenames:
64
- model_name = os.path.basename(filename)[:-6]
65
- answer = {}
66
- with open(filename) as fin:
67
- for line in fin:
68
- line = json.loads(line)
69
- answer[line["question_id"]] = line
70
- model_answers[model_name] = answer
71
-
72
- return model_answers
73
-
74
-
75
- def get_endpoint(endpoint_list):
76
- if endpoint_list is None:
77
- return None
78
- assert endpoint_list is not None
79
- # randomly pick one
80
- api_dict = random.choices(endpoint_list)[0]
81
- return api_dict
82
-
83
-
84
- # load config args from config yaml files
85
- def make_config(config_file: str) -> dict:
86
- config_kwargs = {}
87
- with open(config_file, "r") as f:
88
- config_kwargs = yaml.load(f, Loader=yaml.SafeLoader)
89
-
90
- return config_kwargs
91
-
92
-
93
- def chat_completion_gigachat(model, messages, temperature, max_tokens, api_dict=None):
94
- from gigachat import GigaChat
95
- from gigachat.models import Chat, Messages
96
-
97
- assert api_dict is not None, "no api settings provided!"
98
- auth_token = api_dict.get("auth_token", os.environ.get(api_dict["auth_token"], ""))
99
- client = GigaChat(credentials=auth_token, model=model, verify_ssl_certs=False)
100
- temperature = max(temperature, 0.001)
101
-
102
- messages = [Messages.parse_obj(m) for m in messages]
103
- chat = Chat(messages=messages, max_tokens=max_tokens, temperature=temperature)
104
-
105
- output = API_ERROR_OUTPUT
106
- for _ in range(API_MAX_RETRY):
107
- try:
108
- output = client.chat(chat)
109
- output = output.choices[0].message.content
110
- break
111
- # Don't know other errors
112
- except Exception as e:
113
- print(type(e), e)
114
- time.sleep(API_RETRY_SLEEP)
115
-
116
- return output
117
-
118
-
119
- def chat_completion_yandex(model, messages, temperature, max_tokens, api_dict=None):
120
- from yandex_gpt import YandexGPT, YandexGPTConfigManagerForIAMToken
121
-
122
- assert api_dict is not None, "no api settings provided!"
123
- iam_token = api_dict.get("iam_token", os.environ.get(api_dict["iam_token_ENV"], ""))
124
- config = YandexGPTConfigManagerForIAMToken(model_type=model, catalog_id=api_dict["catalog_id"], iam_token=iam_token)
125
- client = YandexGPT(config_manager=config)
126
-
127
- messages = [{"role": m["role"], "text": m["content"]} for m in messages]
128
-
129
- output = API_ERROR_OUTPUT
130
- for _ in range(API_MAX_RETRY):
131
- try:
132
- output = client.get_sync_completion(
133
- messages=messages,
134
- temperature=temperature,
135
- max_tokens=max_tokens,
136
- )
137
- break
138
- # Don't know other errors
139
- except Exception as e:
140
- print(type(e), e)
141
- time.sleep(API_RETRY_SLEEP)
142
-
143
- return output
144
-
145
-
146
- def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None):
147
- import openai
148
-
149
- api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
150
- if api_dict:
151
- client = openai.OpenAI(
152
- base_url=api_dict["api_base"],
153
- api_key=api_key,
154
- )
155
- else:
156
- client = openai.OpenAI()
157
-
158
- output = API_ERROR_OUTPUT
159
- for _ in range(API_MAX_RETRY):
160
- try:
161
- # print(messages)
162
- completion = client.chat.completions.create(
163
- model=model,
164
- messages=messages,
165
- temperature=temperature,
166
- max_tokens=max_tokens,
167
- stop=["</s>", "<eos>", "<|eot_id|>"],
168
- )
169
- output = completion.choices[0].message.content
170
- break
171
- except openai.RateLimitError as e:
172
- print(type(e), e)
173
- time.sleep(API_RETRY_SLEEP)
174
- except openai.BadRequestError as e:
175
- print(messages)
176
- print(type(e), e)
177
- except KeyError as e:
178
- print(type(e), e)
179
- break
180
-
181
- return output
182
-
183
-
184
- def chat_completion_openai_azure(model, messages, temperature, max_tokens, api_dict=None):
185
- import openai
186
- from openai import AzureOpenAI
187
-
188
- api_base = api_dict["api_base"]
189
- api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
190
- client = AzureOpenAI(
191
- azure_endpoint=api_base, api_key=api_key, api_version=api_dict["api_version"], timeout=240, max_retries=2
192
- )
193
-
194
- output = API_ERROR_OUTPUT
195
- for _ in range(API_MAX_RETRY):
196
- try:
197
- response = client.chat.completions.create(
198
- model=model,
199
- messages=messages,
200
- n=1,
201
- temperature=temperature,
202
- max_tokens=max_tokens,
203
- seed=42,
204
- )
205
- output = response.choices[0].message.content
206
- break
207
- except openai.RateLimitError as e:
208
- print(type(e), e)
209
- time.sleep(API_RETRY_SLEEP)
210
- except openai.BadRequestError as e:
211
- print(type(e), e)
212
- break
213
- except KeyError as e:
214
- print(type(e), e)
215
- break
216
-
217
- return output
218
-
219
-
220
- def chat_completion_anthropic(model, messages, temperature, max_tokens, api_dict=None):
221
- import anthropic
222
-
223
- if api_dict:
224
- api_key = api_dict.get("api_key", os.environ.get(api_dict["api_key_ENV"], ""))
225
- else:
226
- api_key = os.environ["ANTHROPIC_API_KEY"]
227
-
228
- sys_msg = ""
229
- if messages[0]["role"] == "system":
230
- sys_msg = messages[0]["content"]
231
- messages = messages[1:]
232
-
233
- output = API_ERROR_OUTPUT
234
- for _ in range(API_MAX_RETRY):
235
- try:
236
- # print(sys_msg)
237
- c = anthropic.Anthropic(api_key=api_key)
238
- response = c.messages.create(
239
- model=model,
240
- messages=messages,
241
- stop_sequences=[anthropic.HUMAN_PROMPT],
242
- max_tokens=max_tokens,
243
- temperature=temperature,
244
- system=sys_msg,
245
- )
246
- output = response.content[0].text
247
- break
248
- except anthropic.APIError as e:
249
- print(type(e), e)
250
- time.sleep(API_RETRY_SLEEP)
251
- return output
252
-
253
-
254
- def chat_completion_mistral(model, messages, temperature, max_tokens):
255
- from mistralai.client import MistralClient
256
- from mistralai.exceptions import MistralException
257
- from mistralai.models.chat_completion import ChatMessage
258
-
259
- api_key = os.environ["MISTRAL_API_KEY"]
260
- client = MistralClient(api_key=api_key)
261
-
262
- prompts = [ChatMessage(role=message["role"], content=message["content"]) for message in messages]
263
-
264
- output = API_ERROR_OUTPUT
265
- for _ in range(API_MAX_RETRY):
266
- try:
267
- chat_response = client.chat(
268
- model=model,
269
- messages=prompts,
270
- temperature=temperature,
271
- max_tokens=max_tokens,
272
- )
273
- output = chat_response.choices[0].message.content
274
- break
275
- except MistralException as e:
276
- print(type(e), e)
277
- break
278
-
279
- return output
280
-
281
-
282
- def chat_completion_gemini(model, messages, temperature, max_tokens):
283
- import google.generativeai as genai
284
-
285
- genai.configure(api_key=os.environ["GEMINI_API_KEY"])
286
-
287
- safety_settings = [
288
- {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
289
- {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
290
- {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
291
- {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
292
- ]
293
-
294
- # Set up the model
295
- generation_config = {
296
- "temperature": temperature,
297
- "top_p": 1,
298
- "top_k": 1,
299
- "max_output_tokens": max_tokens,
300
- }
301
-
302
- output = API_ERROR_OUTPUT
303
- for _ in range(API_MAX_RETRY):
304
- try:
305
- gemini = genai.GenerativeModel(
306
- model_name=model, generation_config=generation_config, safety_settings=safety_settings
307
- )
308
-
309
- convo = gemini.start_chat(history=[])
310
-
311
- convo.send_message(messages)
312
- output = convo.last.text
313
- break
314
- except genai.types.generation_types.StopCandidateException as e:
315
- print(type(e), e)
316
- break
317
- except Exception as e:
318
- print(type(e), e)
319
- time.sleep(API_RETRY_SLEEP)
320
-
321
- return output
322
-
323
-
324
- def chat_completion_cohere(model, messages, temperature, max_tokens):
325
- import cohere
326
-
327
- co = cohere.Client(os.environ["COHERE_API_KEY"])
328
- assert len(messages) > 0
329
-
330
- template_map = {"system": "SYSTEM", "assistant": "CHATBOT", "user": "USER"}
331
-
332
- assert messages[-1]["role"] == "user"
333
- prompt = messages[-1]["content"]
334
-
335
- if len(messages) > 1:
336
- history = []
337
- for message in messages[:-1]:
338
- history.append({"role": template_map[message["role"]], "message": message["content"]})
339
- else:
340
- history = None
341
-
342
- output = API_ERROR_OUTPUT
343
- for _ in range(API_MAX_RETRY):
344
- try:
345
- response = co.chat(
346
- message=prompt,
347
- model=model,
348
- temperature=temperature,
349
- max_tokens=max_tokens,
350
- chat_history=history,
351
- )
352
- output = response.text
353
- break
354
- except cohere.core.api_error.ApiError as e:
355
- print(type(e), e)
356
- raise
357
- except Exception as e:
358
- print(type(e), e)
359
- break
360
-
361
- return output
362
-
363
-
364
- def reorg_answer_file(answer_file):
365
- """Sort by question id and de-duplication"""
366
- answers = {}
367
- with open(answer_file, "r") as fin:
368
- for line in fin:
369
- qid = json.loads(line)["question_id"]
370
- answers[qid] = line
371
-
372
- qids = sorted(list(answers.keys()))
373
- with open(answer_file, "w") as fout:
374
- for qid in qids:
375
- fout.write(answers[qid])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/build_leaderboard.py CHANGED
@@ -2,17 +2,20 @@ import json
2
  import logging
3
  import os
4
  import time
 
5
 
6
  import pandas as pd
7
  from huggingface_hub import snapshot_download
8
 
9
- from src.envs import DATA_PATH, H4_TOKEN, RESULTS_REPO, METAINFO_REPO
10
 
11
  # Configure logging
12
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
13
 
14
 
15
  def time_diff_wrapper(func):
 
 
16
  def wrapper(*args, **kwargs):
17
  start_time = time.time()
18
  result = func(*args, **kwargs)
@@ -23,19 +26,24 @@ def time_diff_wrapper(func):
23
 
24
  return wrapper
25
 
26
- def chmod_recursive(path, mode):
 
 
27
  os.chmod(path, mode)
28
  for root, dirs, files in os.walk(path):
29
- for dir in dirs:
30
- os.chmod(os.path.join(root, dir), mode)
31
- for file in files:
32
- os.chmod(os.path.join(root, file), mode)
 
33
 
34
  @time_diff_wrapper
35
- def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
 
 
36
  """Download dataset with exponential backoff retries."""
37
  os.makedirs(local_dir, exist_ok=True)
38
- os.makedirs('./tmp', exist_ok=True)
39
  attempt = 0
40
  while attempt < max_attempts:
41
  try:
@@ -43,14 +51,14 @@ def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, ba
43
  snapshot_download(
44
  repo_id=repo_id,
45
  local_dir=local_dir,
46
- cache_dir='./tmp',
47
  repo_type=repo_type,
48
  tqdm_class=None,
49
  token=H4_TOKEN,
50
  etag_timeout=30,
51
  max_workers=8,
52
  force_download=True,
53
- local_dir_use_symlinks=False
54
  )
55
  logging.info("Download successful")
56
  return
@@ -62,18 +70,16 @@ def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, ba
62
  logging.error("Failed to download %s after %s attempts", repo_id, max_attempts)
63
 
64
 
65
- def download_openbench():
66
- """
67
- Скачивает необходимые данные для лидерборда из репозиториев HuggingFace
68
- """
69
- # Скачиваем метаданные лидерборда
70
  try:
71
  download_dataset(METAINFO_REPO, DATA_PATH)
72
  logging.info("Successfully downloaded leaderboard metainfo data")
73
  except Exception as e:
74
  logging.error(f"Failed to download leaderboard metainfo: {e}")
75
-
76
- # Скачиваем результаты моделей
77
  try:
78
  download_dataset(RESULTS_REPO, "m_data")
79
  logging.info("Successfully downloaded model evaluation results")
@@ -81,32 +87,28 @@ def download_openbench():
81
  logging.error(f"Failed to download model evaluation results: {e}")
82
 
83
 
84
- def build_leadearboard_df():
85
  """
86
- Функция для сбора данных лидерборда из всех доступных источников.
87
- Гарантирует, что в лидерборде будет только одна запись для каждой модели (с наивысшим score).
88
  """
89
- results = []
90
- best_model_results = {} # Словарь для отслеживания лучших результатов моделей
91
-
92
- # 1. Пытаемся загрузить данные из метаинформации лидерборда
93
  try:
94
  leaderboard_path = os.path.join(DATA_PATH, "leaderboard.json")
95
  if os.path.exists(leaderboard_path):
96
- with open(leaderboard_path, "r", encoding="utf-8") as eval_file:
97
  saved_data = json.load(eval_file)
98
  if saved_data:
99
  logging.info(f"Loaded {len(saved_data)} models from saved leaderboard data")
100
-
101
- # Обрабатываем каждую модель, сохраняя только лучший ��езультат
102
  for item in saved_data:
103
  try:
104
- # Получаем имя модели, проверяя разные возможные ключи
105
  model_name = item.get("model_name", item.get("model", ""))
106
  if not model_name:
107
  continue
108
-
109
- # Стандартизируем данные
110
  model_data = {
111
  "model": model_name,
112
  "score": float(item.get("score", 0.0)),
@@ -114,10 +116,13 @@ def build_leadearboard_df():
114
  "physics_score": float(item.get("physics_score", 0.0)),
115
  "total_tokens": int(item.get("total_tokens", 0)),
116
  "evaluation_time": float(item.get("evaluation_time", 0.0)),
117
- "system_prompt": item.get("system_prompt", "Вы - полезный помощник по математике и физике. Ответьте на русском языке.")
 
 
 
118
  }
119
-
120
- # Определяем, является ли это лучшим результатом для данной модели
121
  model_base_name = model_name.split("/")[-1].split("_v")[0]
122
  if model_base_name in best_model_results:
123
  if model_data["score"] > best_model_results[model_base_name]["score"]:
@@ -125,43 +130,39 @@ def build_leadearboard_df():
125
  else:
126
  best_model_results[model_base_name] = model_data
127
  except KeyError as e:
128
- # Логируем ошибку, но продолжаем обработку других моделей
129
  logging.error(f"Failed to process model data: {e}")
130
  except Exception as e:
131
  logging.error(f"Failed to load saved leaderboard data: {e}")
132
-
133
- # 2. Загружаем модели из директории внешних моделей
134
  try:
135
  external_dir = "./m_data/model_data/external/"
136
  if os.path.exists(external_dir):
137
  for file in os.listdir(external_dir):
138
  if file.endswith(".json"):
139
  try:
140
- with open(os.path.join(external_dir, file), "r", encoding="utf-8") as f:
141
  data = json.load(f)
142
-
143
- # Конвертируем данные из любого формата в формат DeathMath
144
- converted_data = convert_old_format_to_deatmath(data)
145
-
146
- # Проверяем наличие необходимых полей после конвертации
147
- model_name = converted_data.get("model_name", converted_data.get("model", ""))
148
  if not model_name:
149
- logging.error(f"Failed to parse {file}: 'model_name' not found after conversion")
150
  continue
151
-
152
- # Стандартизируем данные
153
  model_data = {
154
  "model": model_name,
155
- "score": float(converted_data.get("score", 0.0)),
156
- "math_score": float(converted_data.get("math_score", 0.0)),
157
- "physics_score": float(converted_data.get("physics_score", 0.0)),
158
- "total_tokens": int(converted_data.get("total_tokens", 0)),
159
- "evaluation_time": float(converted_data.get("evaluation_time", 0.0)),
160
- "system_prompt": converted_data.get("system_prompt",
161
- "Вы - полезный помощник по математике и физике. Ответьте на русском языке.")
 
 
162
  }
163
-
164
- # Определяем, является ли это лучшим результатом для данной модели
165
  model_base_name = model_name.split("/")[-1].split("_v")[0]
166
  if model_base_name in best_model_results:
167
  if model_data["score"] > best_model_results[model_base_name]["score"]:
@@ -173,13 +174,12 @@ def build_leadearboard_df():
173
  continue
174
  except Exception as e:
175
  logging.error(f"Failed to process external model data: {e}")
176
-
177
- # 3. Собираем все лучшие результаты
178
  results = list(best_model_results.values())
179
-
180
- # 4. Добавляем базовые модели по умолчанию, если список пуст
181
  if not results:
182
- # Добавляем несколько моделей-заглушек для отображения интерфейса
183
  results = [
184
  {
185
  "model": "example/model-1",
@@ -188,7 +188,7 @@ def build_leadearboard_df():
188
  "physics_score": 0.6,
189
  "total_tokens": 1000000,
190
  "evaluation_time": 3600.0,
191
- "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
192
  },
193
  {
194
  "model": "example/model-2",
@@ -197,96 +197,18 @@ def build_leadearboard_df():
197
  "physics_score": 0.5,
198
  "total_tokens": 800000,
199
  "evaluation_time": 3000.0,
200
- "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
201
- }
202
  ]
203
  logging.warning("No model data found, using example models")
204
-
205
- # Создаем DataFrame и сортируем по общему баллу
206
  df = pd.DataFrame(results)
207
- df.sort_values(by='score', ascending=False, inplace=True)
208
-
209
- # Округляем числовые столбцы для красивого отображения
210
- numeric_cols = df.select_dtypes(include=['number']).columns
211
  if not numeric_cols.empty:
212
  df[numeric_cols] = df[numeric_cols].round(3)
213
-
214
- return df
215
-
216
 
217
- def convert_old_format_to_deatmath(data):
218
- """
219
- Конвертирует данные из старого формата Small Shlepa в формат DeathMath
220
-
221
- Args:
222
- data (dict): Данные модели в старом формате
223
-
224
- Returns:
225
- dict: Конвертированные данные в формате DeathMath
226
- """
227
- # Проверяем, возможно это файл уже в формате DeathMath
228
- if "score" in data:
229
- return data
230
-
231
- # Проверяем формат Small Shlepa с полями: musicmc, moviesmc, booksmc, lawmc, mmluproru
232
- small_shlepa_fields = ["musicmc", "moviesmc", "booksmc", "lawmc", "mmluproru", "model"]
233
- is_shlepa_format = any(field in data for field in small_shlepa_fields)
234
-
235
- if is_shlepa_format:
236
- logging.info(f"Конвертация модели из формата Small Shlepa в формат DeathMath: {data.get('model', 'Unknown')}")
237
-
238
- # Конвертируем данные с примерным соответствием:
239
- # math_score = среднее(musicmc, booksmc, mmluproru)
240
- # physics_score = lawmc или moviesmc
241
- math_score = 0.0
242
- math_components = 0
243
-
244
- if "musicmc" in data and data["musicmc"] is not None:
245
- math_score += float(data["musicmc"])
246
- math_components += 1
247
-
248
- if "booksmc" in data and data["booksmc"] is not None:
249
- math_score += float(data["booksmc"])
250
- math_components += 1
251
-
252
- if "mmluproru" in data and data["mmluproru"] is not None:
253
- math_score += float(data["mmluproru"])
254
- math_components += 1
255
-
256
- if math_components > 0:
257
- math_score /= math_components
258
-
259
- # Для physics_score используем значение lawmc или moviesmc (что доступно)
260
- physics_score = 0.0
261
- if "lawmc" in data and data["lawmc"] is not None:
262
- physics_score = float(data["lawmc"])
263
- elif "moviesmc" in data and data["moviesmc"] is not None:
264
- physics_score = float(data["moviesmc"])
265
-
266
- # Общий скор - среднее арифметическое
267
- avg_score = (math_score + physics_score) / 2 if math_score or physics_score else 0.0
268
-
269
- converted_data = {
270
- "model_name": data.get("model", "Unknown"),
271
- "score": avg_score,
272
- "math_score": math_score,
273
- "physics_score": physics_score,
274
- "total_tokens": int(data.get("total_tokens", 0)),
275
- "evaluation_time": float(data.get("evaluation_time", 0.0)),
276
- "system_prompt": data.get("system_prompt",
277
- "Вы - полезный помощник по математике и физике. Ответьте на русском языке.")
278
- }
279
-
280
- return converted_data
281
-
282
- # Если формат неизвестен, возвращаем стандартный шаблон
283
- logging.warning(f"Неизвестный формат данных модели, использую шаблон")
284
- return {
285
- "model_name": data.get("model_name", data.get("model", "Unknown")),
286
- "score": 0.0,
287
- "math_score": 0.0,
288
- "physics_score": 0.0,
289
- "total_tokens": 0,
290
- "evaluation_time": 0.0,
291
- "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке."
292
- }
 
2
  import logging
3
  import os
4
  import time
5
+ from typing import Any
6
 
7
  import pandas as pd
8
  from huggingface_hub import snapshot_download
9
 
10
+ from src.envs import DATA_PATH, H4_TOKEN, METAINFO_REPO, RESULTS_REPO
11
 
12
  # Configure logging
13
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
14
 
15
 
16
  def time_diff_wrapper(func):
17
+ """Decorator to measure function execution time."""
18
+
19
  def wrapper(*args, **kwargs):
20
  start_time = time.time()
21
  result = func(*args, **kwargs)
 
26
 
27
  return wrapper
28
 
29
+
30
+ def chmod_recursive(path: str, mode: int) -> None:
31
+ """Recursively change file permissions."""
32
  os.chmod(path, mode)
33
  for root, dirs, files in os.walk(path):
34
+ for dir_name in dirs:
35
+ os.chmod(os.path.join(root, dir_name), mode)
36
+ for file_name in files:
37
+ os.chmod(os.path.join(root, file_name), mode)
38
+
39
 
40
  @time_diff_wrapper
41
+ def download_dataset(
42
+ repo_id: str, local_dir: str, repo_type: str = "dataset", max_attempts: int = 3, backoff_factor: float = 1.5
43
+ ) -> None:
44
  """Download dataset with exponential backoff retries."""
45
  os.makedirs(local_dir, exist_ok=True)
46
+ os.makedirs("./tmp", exist_ok=True)
47
  attempt = 0
48
  while attempt < max_attempts:
49
  try:
 
51
  snapshot_download(
52
  repo_id=repo_id,
53
  local_dir=local_dir,
54
+ cache_dir="./tmp",
55
  repo_type=repo_type,
56
  tqdm_class=None,
57
  token=H4_TOKEN,
58
  etag_timeout=30,
59
  max_workers=8,
60
  force_download=True,
61
+ local_dir_use_symlinks=False,
62
  )
63
  logging.info("Download successful")
64
  return
 
70
  logging.error("Failed to download %s after %s attempts", repo_id, max_attempts)
71
 
72
 
73
+ def download_openbench() -> None:
74
+ """Download necessary data for the leaderboard from HuggingFace repositories."""
75
+ # Download leaderboard metadata
 
 
76
  try:
77
  download_dataset(METAINFO_REPO, DATA_PATH)
78
  logging.info("Successfully downloaded leaderboard metainfo data")
79
  except Exception as e:
80
  logging.error(f"Failed to download leaderboard metainfo: {e}")
81
+
82
+ # Download model evaluation results
83
  try:
84
  download_dataset(RESULTS_REPO, "m_data")
85
  logging.info("Successfully downloaded model evaluation results")
 
87
  logging.error(f"Failed to download model evaluation results: {e}")
88
 
89
 
90
+ def build_leaderboard_df() -> pd.DataFrame:
91
  """
92
+ Build leaderboard dataframe from all available sources.
93
+ Ensures only one entry per model (with highest score).
94
  """
95
+ best_model_results: dict[str, dict[str, Any]] = {}
96
+
97
+ # 1. Load data from leaderboard metainfo
 
98
  try:
99
  leaderboard_path = os.path.join(DATA_PATH, "leaderboard.json")
100
  if os.path.exists(leaderboard_path):
101
+ with open(leaderboard_path, encoding="utf-8") as eval_file:
102
  saved_data = json.load(eval_file)
103
  if saved_data:
104
  logging.info(f"Loaded {len(saved_data)} models from saved leaderboard data")
105
+
 
106
  for item in saved_data:
107
  try:
 
108
  model_name = item.get("model_name", item.get("model", ""))
109
  if not model_name:
110
  continue
111
+
 
112
  model_data = {
113
  "model": model_name,
114
  "score": float(item.get("score", 0.0)),
 
116
  "physics_score": float(item.get("physics_score", 0.0)),
117
  "total_tokens": int(item.get("total_tokens", 0)),
118
  "evaluation_time": float(item.get("evaluation_time", 0.0)),
119
+ "system_prompt": item.get(
120
+ "system_prompt",
121
+ "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
122
+ ),
123
  }
124
+
125
+ # Keep only best result for each model
126
  model_base_name = model_name.split("/")[-1].split("_v")[0]
127
  if model_base_name in best_model_results:
128
  if model_data["score"] > best_model_results[model_base_name]["score"]:
 
130
  else:
131
  best_model_results[model_base_name] = model_data
132
  except KeyError as e:
 
133
  logging.error(f"Failed to process model data: {e}")
134
  except Exception as e:
135
  logging.error(f"Failed to load saved leaderboard data: {e}")
136
+
137
+ # 2. Load models from external directory
138
  try:
139
  external_dir = "./m_data/model_data/external/"
140
  if os.path.exists(external_dir):
141
  for file in os.listdir(external_dir):
142
  if file.endswith(".json"):
143
  try:
144
+ with open(os.path.join(external_dir, file), encoding="utf-8") as f:
145
  data = json.load(f)
146
+
147
+ model_name = data.get("model_name", data.get("model", ""))
 
 
 
 
148
  if not model_name:
149
+ logging.error(f"Failed to parse {file}: 'model_name' not found")
150
  continue
151
+
 
152
  model_data = {
153
  "model": model_name,
154
+ "score": float(data.get("score", 0.0)),
155
+ "math_score": float(data.get("math_score", 0.0)),
156
+ "physics_score": float(data.get("physics_score", 0.0)),
157
+ "total_tokens": int(data.get("total_tokens", 0)),
158
+ "evaluation_time": float(data.get("evaluation_time", 0.0)),
159
+ "system_prompt": data.get(
160
+ "system_prompt",
161
+ "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
162
+ ),
163
  }
164
+
165
+ # Keep only best result for each model
166
  model_base_name = model_name.split("/")[-1].split("_v")[0]
167
  if model_base_name in best_model_results:
168
  if model_data["score"] > best_model_results[model_base_name]["score"]:
 
174
  continue
175
  except Exception as e:
176
  logging.error(f"Failed to process external model data: {e}")
177
+
178
+ # 3. Collect all best results
179
  results = list(best_model_results.values())
180
+
181
+ # 4. Add default example models if list is empty
182
  if not results:
 
183
  results = [
184
  {
185
  "model": "example/model-1",
 
188
  "physics_score": 0.6,
189
  "total_tokens": 1000000,
190
  "evaluation_time": 3600.0,
191
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
192
  },
193
  {
194
  "model": "example/model-2",
 
197
  "physics_score": 0.5,
198
  "total_tokens": 800000,
199
  "evaluation_time": 3000.0,
200
+ "system_prompt": "Вы - полезный помощник по математике и физике. Ответьте на русском языке.",
201
+ },
202
  ]
203
  logging.warning("No model data found, using example models")
204
+
205
+ # Create DataFrame and sort by score
206
  df = pd.DataFrame(results)
207
+ df.sort_values(by="score", ascending=False, inplace=True)
208
+
209
+ # Round numeric columns
210
+ numeric_cols = df.select_dtypes(include=["number"]).columns
211
  if not numeric_cols.empty:
212
  df[numeric_cols] = df[numeric_cols].round(3)
 
 
 
213
 
214
+ return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/filter_models.py DELETED
@@ -1,173 +0,0 @@
1
- from src.display.formatting import model_hyperlink
2
- from src.display.utils import AutoEvalColumn
3
-
4
-
5
- # Models which have been flagged by users as being problematic for a reason or another
6
- # (Model name to forum discussion link)
7
- FLAGGED_MODELS = {
8
- "merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
9
- "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
10
- "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
11
- "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
12
- "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
13
- "TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
14
- "gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
15
- "AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
16
- "AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
17
- "AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
18
- "fblgit/una-xaberius-34b-v1beta": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/444",
19
- "jan-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
20
- "rwitz2/go-bruins-v2.1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
21
- "rwitz2/go-bruins-v2.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
22
- "GreenNode/GreenNodeLM-v3olet-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
23
- "GreenNode/GreenNodeLM-7B-v4leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
24
- "GreenNode/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
25
- "viethq188/LeoScorpius-7B-Chat-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
26
- "GreenNode/GreenNodeLM-7B-v2leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
27
- "janai-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
28
- "ignos/LeoScorpius-GreenNode-Alpaca-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
29
- "fblgit/una-cybertron-7b-v3-OMA": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
30
- "mncai/mistral-7b-dpo-merge-v1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
31
- "mncai/mistral-7b-dpo-v6": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
32
- "Toten5/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
33
- "GreenNode/GreenNodeLM-7B-v1olet": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
34
- "quantumaikr/quantum-dpo-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
35
- "quantumaikr/quantum-v0.01": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
36
- "quantumaikr/quantum-trinity-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
37
- "mncai/mistral-7b-dpo-v5": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
38
- "cookinai/BruinHermes": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
39
- "jan-ai/Pandora-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
40
- "v1olet/v1olet_marcoroni-go-bruins-merge-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
41
- "v1olet/v1olet_merged_dpo_7B_v3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
42
- "rwitz2/pee": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
43
- "zyh3826 / GML-Mistral-merged-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/503",
44
- "dillfrescott/trinity-medium": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
45
- "udkai/Garrulus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/526",
46
- "dfurman/GarrulusMarcoro-7B-v0.1": "https://huggingface.co/dfurman/GarrulusMarcoro-7B-v0.1/discussions/1",
47
- "eren23/slerp-test-turdus-beagle": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
48
- "abideen/NexoNimbus-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
49
- "alnrg2arg/test2_3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
50
- "nfaheem/Marcoroni-7b-DPO-Merge": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
51
- "CultriX/MergeTrix-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
52
- "liminerity/Blur-7b-v1.21": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
53
- # Merges not indicated
54
- "gagan3012/MetaModelv2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
55
- "gagan3012/MetaModelv3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
56
- "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
57
- "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
58
- "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
59
- "kyujinpy/Sakura-SOLRCA-Instruct-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
60
- "fblgit/LUNA-SOLARkrautLM-Instruct": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
61
- "perlthoughts/Marcoroni-8x7B-v3-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
62
- "rwitz/go-bruins-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
63
- "rwitz/go-bruins": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
64
- "Walmart-the-bag/Solar-10.7B-Cato": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
65
- "aqweteddy/mistral_tv-neural-marconroni": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
66
- "NExtNewChattingAI/shark_tank_ai_7_b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
67
- "Q-bert/MetaMath-Cybertron": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
68
- "OpenPipe/mistral-ft-optimized-1227": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
69
- "perlthoughts/Falkor-7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
70
- "v1olet/v1olet_merged_dpo_7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
71
- "Ba2han/BruinsV2-OpHermesNeu-11B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
72
- "DopeorNope/You_can_cry_Snowman-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
73
- "PistachioAlt/Synatra-MCS-7B-v0.3-RP-Slerp": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
74
- "Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
75
- "Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-2-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
76
- "perlthoughts/Falkor-8x7B-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
77
- "elinas/chronos007-70b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
78
- "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Linear": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
79
- "Weyaxi/MetaMath-neural-chat-7b-v3-2-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
80
- "diffnamehard/Mistral-CatMacaroni-slerp-uncensored-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
81
- "Weyaxi/neural-chat-7b-v3-1-OpenHermes-2.5-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
82
- "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
83
- "Walmart-the-bag/Misted-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
84
- "garage-bAInd/Camel-Platypus2-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
85
- "Weyaxi/OpenOrca-Zephyr-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
86
- "uukuguy/speechless-mistral-7b-dare-0.85": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
87
- "DopeorNope/SOLARC-M-10.7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
88
- "cloudyu/Mixtral_11Bx2_MoE_19B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
89
- "DopeorNope/SOLARC-MOE-10.7Bx6 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
90
- "DopeorNope/SOLARC-MOE-10.7Bx4": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
91
- "gagan3012/MetaModelv2 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
92
- "udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
93
- "kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
94
- "kodonho/SolarM-SakuraSolar-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
95
- "Yhyu13/LMCocktail-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
96
- "mlabonne/NeuralMarcoro14-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
97
- "Neuronovo/neuronovo-7B-v0.2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
98
- "ryandt/MusingCaterpillar": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
99
- "Neuronovo/neuronovo-7B-v0.3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
100
- "SanjiWatsuki/Lelantos-DPO-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
101
- "bardsai/jaskier-7b-dpo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
102
- "cookinai/OpenCM-14": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
103
- "bardsai/jaskier-7b-dpo-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
104
- "jan-hq/supermario-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
105
- # MoErges
106
- "cloudyu/Yi-34Bx2-MoE-60B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
107
- "cloudyu/Mixtral_34Bx2_MoE_60B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
108
- "gagan3012/MetaModel_moe": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
109
- "macadeliccc/SOLAR-math-2x10.7b-v0.2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
110
- "cloudyu/Mixtral_7Bx2_MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
111
- "macadeliccc/SOLAR-math-2x10.7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
112
- "macadeliccc/Orca-SOLAR-4x10.7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
113
- "macadeliccc/piccolo-8x7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
114
- "cloudyu/Mixtral_7Bx4_MOE_24B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
115
- "macadeliccc/laser-dolphin-mixtral-2x7b-dpo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
116
- "macadeliccc/polyglot-math-4x7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
117
- # Other - contamination mostly
118
- "DopeorNope/COKAL-v1-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/566",
119
- "CultriX/MistralTrix-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/556",
120
- "Contamination/contaminated_proof_7b_v1.0": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/664",
121
- "Contamination/contaminated_proof_7b_v1.0_safetensor": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/664",
122
- }
123
-
124
- # Models which have been requested by orgs to not be submitted on the leaderboard
125
- DO_NOT_SUBMIT_MODELS = [
126
- "Voicelab/trurl-2-13b", # trained on MMLU
127
- "TigerResearch/tigerbot-70b-chat", # per authors request
128
- "TigerResearch/tigerbot-70b-chat-v2", # per authors request
129
- "TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
130
- ]
131
-
132
-
133
- def flag_models(leaderboard_data: list[dict]):
134
- """Flags models based on external criteria or flagged status."""
135
- for model_data in leaderboard_data:
136
- # If a model is not flagged, use its "fullname" as a key
137
- if model_data[AutoEvalColumn.not_flagged.name]:
138
- flag_key = model_data[AutoEvalColumn.fullname.name]
139
- else:
140
- # Merges and moes are flagged
141
- flag_key = "merged"
142
-
143
- # Reverse the logic: Check for non-flagged models instead
144
- if flag_key in FLAGGED_MODELS:
145
- issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
146
- issue_link = model_hyperlink(
147
- FLAGGED_MODELS[flag_key],
148
- f"See discussion #{issue_num}",
149
- )
150
- model_data[
151
- AutoEvalColumn.model.name
152
- ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
153
- model_data[AutoEvalColumn.not_flagged.name] = False
154
- else:
155
- model_data[AutoEvalColumn.not_flagged.name] = True
156
-
157
-
158
- def remove_forbidden_models(leaderboard_data: list[dict]):
159
- """Removes models from the leaderboard based on the DO_NOT_SUBMIT list."""
160
- indices_to_remove = []
161
- for ix, model in enumerate(leaderboard_data):
162
- if model[AutoEvalColumn.fullname.name] in DO_NOT_SUBMIT_MODELS:
163
- indices_to_remove.append(ix)
164
-
165
- # Remove the models from the list
166
- for ix in reversed(indices_to_remove):
167
- leaderboard_data.pop(ix)
168
- return leaderboard_data
169
-
170
-
171
- def filter_models_flags(leaderboard_data: list[dict]):
172
- leaderboard_data = remove_forbidden_models(leaderboard_data)
173
- flag_models(leaderboard_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,261 +0,0 @@
1
- import json
2
- from pathlib import Path
3
- from json import JSONDecodeError
4
- import logging
5
- import math
6
-
7
- from dataclasses import dataclass, field
8
- from typing import Optional, Dict, List
9
-
10
- from tqdm import tqdm
11
- from tqdm.contrib.logging import logging_redirect_tqdm
12
-
13
- import numpy as np
14
-
15
- from src.display.formatting import make_clickable_model
16
- from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
17
-
18
- # Configure logging
19
- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
20
-
21
-
22
- @dataclass
23
- class EvalResult:
24
- # Also see src.display.utils.AutoEvalColumn for what will be displayed.
25
- eval_name: str # org_model_precision (uid)
26
- full_model: str # org/model (path on hub)
27
- org: Optional[str]
28
- model: str
29
- revision: str # commit hash, "" if main
30
- results: Dict[str, float]
31
- precision: Precision = Precision.Unknown
32
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
33
- weight_type: WeightType = WeightType.Original
34
- architecture: str = "Unknown" # From config file
35
- license: str = "?"
36
- likes: int = 0
37
- num_params: int = 0
38
- date: str = "" # submission date of request file
39
- still_on_hub: bool = True
40
- is_merge: bool = False
41
- not_flagged: bool = False
42
- status: str = "FINISHED"
43
- # List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
44
- tags: List[str] = field(default_factory=list)
45
-
46
- @classmethod
47
- def init_from_json_file(cls, json_filepath: str) -> "EvalResult":
48
- with open(json_filepath, "r") as fp:
49
- data = json.load(fp)
50
-
51
- config = data.get("config_general", {})
52
- precision = Precision.from_str(config.get("model_dtype", "unknown"))
53
- org_and_model = config.get("model_name", "").split("/", 1)
54
- org = org_and_model[0] if len(org_and_model) > 1 else None
55
- model = org_and_model[-1]
56
- if len(org_and_model) == 1:
57
- org = None
58
- model = org_and_model[0]
59
- result_key = f"{model}_{precision.value.name}"
60
- else:
61
- org = org_and_model[0]
62
- model = org_and_model[1]
63
- result_key = f"{org}_{model}_{precision.value.name}"
64
- full_model = "/".join(org_and_model)
65
-
66
- results = cls.extract_results(data) # Properly call the method to extract results
67
-
68
- return cls(
69
- eval_name=result_key,
70
- full_model=full_model,
71
- org=org,
72
- model=model,
73
- results=results,
74
- precision=precision,
75
- revision=config.get("model_sha", ""),
76
- )
77
-
78
- @staticmethod
79
- def extract_results(data: Dict) -> Dict[str, float]:
80
- """
81
- Extract and process benchmark results from a given dict.
82
-
83
- Parameters:
84
- - data (Dict): A dictionary containing benchmark data. This dictionary must
85
- include 'versions' and 'results' keys with respective sub-data.
86
-
87
- Returns:
88
- - Dict[str, float]: A dictionary where keys are benchmark names and values
89
- are the processed average scores as percentages.
90
-
91
- Notes:
92
- - The method specifically checks for certain benchmark names to skip outdated entries.
93
- - Handles NaN values by setting the corresponding benchmark result to 0.0.
94
- - Averages scores across metrics for benchmarks found in the data, in a percentage format.
95
- """
96
- results = {}
97
- for task in Tasks:
98
- task = task.value
99
- # We skip old mmlu entries
100
- if task.benchmark == "hendrycksTest":
101
- for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
102
- if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
103
- continue
104
-
105
- # Some benchamrk values are NaNs, mostly truthfulQA
106
- # Would be more optimal (without the whole dict itertion) if benchmark name was same as key in results
107
- # e.g. not harness|truthfulqa:mc|0 but truthfulqa:mc
108
- for k, v in data["results"].items():
109
- if task.benchmark in k:
110
- if math.isnan(float(v[task.metric])):
111
- results[task.benchmark] = 0.0
112
- continue
113
-
114
- # We average all scores of a given metric (mostly for mmlu)
115
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
116
- if accs.size == 0 or any([acc is None for acc in accs]):
117
- continue
118
-
119
- mean_acc = np.mean(accs) * 100.0
120
- results[task.benchmark] = mean_acc
121
-
122
- return results
123
-
124
- def update_with_request_file(self, requests_path):
125
- """Finds the relevant request file for the current model and updates info with it."""
126
- try:
127
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
128
- if request_file is None:
129
- logging.warning(f"No request file for {self.org}/{self.model}")
130
- self.status = "FAILED"
131
- return
132
-
133
- with open(request_file, "r") as f:
134
- request = json.load(f)
135
-
136
- self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
137
- self.weight_type = WeightType[request.get("weight_type", "Original")]
138
- self.num_params = int(request.get("params", 0)) # Ensuring type safety
139
- self.date = request.get("submitted_time", "")
140
- self.architecture = request.get("architectures", "Unknown")
141
- self.status = request.get("status", "FAILED")
142
-
143
- except FileNotFoundError:
144
- self.status = "FAILED"
145
- logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
146
- except JSONDecodeError:
147
- self.status = "FAILED"
148
- logging.error(f"Error decoding JSON from the request file for {self.org}/{self.model}")
149
- except KeyError as e:
150
- self.status = "FAILED"
151
- logging.error(f"Key error {e} in processing request file for {self.org}/{self.model}")
152
- except Exception as e: # Catch-all for any other unexpected exceptions
153
- self.status = "FAILED"
154
- logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
155
-
156
- def update_with_dynamic_file_dict(self, file_dict):
157
- """Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
158
- # Default values set for optional or potentially missing keys.
159
- self.license = file_dict.get("license", "?")
160
- self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
161
- self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
162
- self.tags = file_dict.get("tags", [])
163
-
164
- # Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
165
- self.not_flagged = not (any("flagged" in tag for tag in self.tags))
166
-
167
- def to_dict(self):
168
- """Converts the Eval Result to a dict compatible with our dataframe display"""
169
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
170
- data_dict = {
171
- "eval_name": self.eval_name, # not a column, just a save name,
172
- AutoEvalColumn.precision.name: self.precision.value.name,
173
- AutoEvalColumn.model_type.name: self.model_type.value.name,
174
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
175
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
176
- AutoEvalColumn.architecture.name: self.architecture,
177
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
178
- AutoEvalColumn.fullname.name: self.full_model,
179
- AutoEvalColumn.revision.name: self.revision,
180
- AutoEvalColumn.average.name: average,
181
- AutoEvalColumn.license.name: self.license,
182
- AutoEvalColumn.likes.name: self.likes,
183
- AutoEvalColumn.params.name: self.num_params,
184
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
185
- AutoEvalColumn.merged.name: not ("merge" in self.tags if self.tags else False),
186
- AutoEvalColumn.moe.name: not (
187
- ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()
188
- ),
189
- AutoEvalColumn.not_flagged.name: self.not_flagged,
190
- }
191
-
192
- for task in Tasks:
193
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
194
-
195
- return data_dict
196
-
197
-
198
- def get_request_file_for_model(requests_path, model_name, precision):
199
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
200
- requests_path = Path(requests_path)
201
- pattern = f"{model_name}_eval_request_*.json"
202
-
203
- # Using pathlib to find files matching the pattern
204
- request_files = list(requests_path.glob(pattern))
205
-
206
- # Sort the files by name in descending order to mimic 'reverse=True'
207
- request_files.sort(reverse=True)
208
-
209
- # Select the correct request file based on 'status' and 'precision'
210
- request_file = None
211
- for request_file in request_files:
212
- with request_file.open("r") as f:
213
- req_content = json.load(f)
214
- if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
215
- request_file = str(request_file)
216
-
217
- # Return empty string if no file found that matches criteria
218
- return request_file
219
-
220
-
221
- def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
222
- """From the path of the results folder root, extract all needed info for results"""
223
- with open(dynamic_path) as f:
224
- dynamic_data = json.load(f)
225
-
226
- results_path = Path(results_path)
227
- model_files = list(results_path.rglob("results_*.json"))
228
- model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
229
-
230
- eval_results = {}
231
- # Wrap model_files iteration with tqdm for progress display
232
- for model_result_filepath in tqdm(model_files, desc="Processing model files"):
233
- # Creation of result
234
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
235
- with logging_redirect_tqdm():
236
- eval_result.update_with_request_file(requests_path)
237
-
238
- if eval_result.full_model in dynamic_data:
239
- eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
240
- # Hardcoding because of gating problem
241
- if any([org in eval_result.full_model for org in ["meta-llama/", "google/", "tiiuae/"]]):
242
- eval_result.still_on_hub = True
243
-
244
- # Store results of same eval together
245
- eval_name = eval_result.eval_name
246
- if eval_name in eval_results.keys():
247
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
248
- else:
249
- eval_results[eval_name] = eval_result
250
-
251
- results = []
252
- for k, v in eval_results.items():
253
- try:
254
- if v.status == "FINISHED":
255
- v.to_dict() # we test if the dict version is complete
256
- results.append(v)
257
- except KeyError as e:
258
- logging.error(f"Error while checking model {k} {v.date} json, no key: {e}") # not all eval values present
259
- continue
260
-
261
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,52 +0,0 @@
1
- import pathlib
2
- import pandas as pd
3
- from src.display.formatting import has_no_nan_values, make_clickable_model
4
- from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
5
- from src.leaderboard.filter_models import filter_models_flags
6
- from src.leaderboard.read_evals import get_raw_eval_results
7
- from src.display.utils import load_json_data
8
-
9
-
10
- def _process_model_data(entry, model_name_key="model", revision_key="revision"):
11
- """Enrich model data with clickable links and revisions."""
12
- entry[EvalQueueColumn.model.name] = make_clickable_model(entry.get(model_name_key, ""))
13
- entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main")
14
- return entry
15
-
16
-
17
- def get_evaluation_queue_df(save_path, cols):
18
- """Generate dataframes for pending, running, and finished evaluation entries."""
19
- save_path = pathlib.Path(save_path)
20
- all_evals = []
21
-
22
- for path in save_path.rglob("*.json"):
23
- data = load_json_data(path)
24
- if data:
25
- all_evals.append(_process_model_data(data))
26
-
27
- # Organizing data by status
28
- status_map = {
29
- "PENDING": ["PENDING", "RERUN"],
30
- "RUNNING": ["RUNNING"],
31
- "FINISHED": ["FINISHED", "PENDING_NEW_EVAL"],
32
- }
33
- status_dfs = {status: [] for status in status_map}
34
- for eval_data in all_evals:
35
- for status, extra_statuses in status_map.items():
36
- if eval_data["status"] in extra_statuses:
37
- status_dfs[status].append(eval_data)
38
-
39
- return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"])
40
-
41
-
42
- def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmark_cols):
43
- """Retrieve and process leaderboard data."""
44
- raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
45
- all_data_json = [model.to_dict() for model in raw_data] + [baseline_row]
46
- filter_models_flags(all_data_json)
47
-
48
- df = pd.DataFrame.from_records(all_data_json)
49
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
50
- df = df[cols].round(decimals=2)
51
- df = df[has_no_nan_values(df, benchmark_cols)]
52
- return raw_data, df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/radial/radial.py CHANGED
@@ -1,115 +1,126 @@
1
- import plotly.graph_objects as go
 
 
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
- import pandas as pd
5
- import random
6
- import itertools as it
7
 
8
- from src.leaderboard.build_leaderboard import build_leadearboard_df
9
 
10
  def create_plot(selected_models):
11
  """
12
  Создает визуализацию для сравнения выбранных моделей по метрикам DeathMath
13
-
14
  Args:
15
  selected_models: Список названий моделей для отображения на графике
16
-
17
  Returns:
18
  matplotlib.figure.Figure: График для отображения в интерфейсе
19
  """
20
  # Получаем данные моделей из лидерборда
21
- models_df = build_leadearboard_df()
22
-
23
  # Если нет выбранных моделей или данные не загружены, возвращаем пустой график
24
  if not selected_models or models_df.empty:
25
  fig, ax = plt.subplots(figsize=(10, 6))
26
- ax.text(0.5, 0.5, "Нет данных для отображения",
27
- horizontalalignment='center', verticalalignment='center',
28
- transform=ax.transAxes, fontsize=14)
 
 
 
 
 
 
29
  ax.set_axis_off()
30
  return fig
31
-
32
  # Фильтруем DataFrame, чтобы оставить только выбранные модели
33
- models_to_show = models_df[models_df['model'].isin(selected_models)]
34
-
35
  if models_to_show.empty:
36
  fig, ax = plt.subplots(figsize=(10, 6))
37
- ax.text(0.5, 0.5, "Выбранные модели не найдены в данных",
38
- horizontalalignment='center', verticalalignment='center',
39
- transform=ax.transAxes, fontsize=14)
 
 
 
 
 
 
40
  ax.set_axis_off()
41
  return fig
42
-
43
  # Настройка бар-графика для сравнения моделей
44
  fig, ax = plt.subplots(figsize=(12, 8))
45
-
46
  # Ширина столбцов
47
  bar_width = 0.25
48
-
49
  # Позиции на оси x
50
  models_count = len(models_to_show)
51
  indices = np.arange(models_count)
52
-
53
  # Цветовая палитра
54
- colors = ['#1f77b4', '#ff7f0e', '#2ca02c']
55
-
56
  # Строим столбцы для разных метрик
57
- ax.bar(indices - bar_width, models_to_show['math_score'], bar_width,
58
- label='RussianMath Score', color=colors[0])
59
- ax.bar(indices, models_to_show['physics_score'], bar_width,
60
- label='RussianPhysics Score', color=colors[1])
61
- ax.bar(indices + bar_width, models_to_show['score'], bar_width,
62
- label='Combined Score', color=colors[2])
63
-
64
  # Настройка осей и меток
65
- ax.set_xlabel('Модели')
66
- ax.set_ylabel('Баллы')
67
- ax.set_title('Сравнение производительности моделей на DeathMath benchmark')
68
  ax.set_xticks(indices)
69
- ax.set_xticklabels(models_to_show['model'], rotation=45, ha='right')
70
  ax.legend()
71
-
72
  # Ограничение значений по оси y от 0 до 1
73
  ax.set_ylim(0, 1.0)
74
-
75
  # Добавляем сетку для лучшей читаемости
76
- ax.grid(axis='y', linestyle='--', alpha=0.7)
77
-
78
  # Обеспечиваем, чтобы все метки помещались
79
  plt.tight_layout()
80
-
81
  return fig
82
 
 
83
  def create_radar_plot(selected_models):
84
  """
85
  Создает радиальную диаграмму для сравнения выбранных моделей
86
-
87
  Args:
88
  selected_models: Список названий моделей для отображения на графике
89
-
90
  Returns:
91
  plotly.graph_objects.Figure: Интерактивный радиальный график
92
  """
93
- models = build_leadearboard_df()
94
  metrics = ["math_score", "physics_score", "score"]
95
  metric_labels = ["RussianMath", "RussianPhysics", "Combined"]
96
-
97
  MIN_COLOUR_DISTANCE_BETWEEN_MODELS = 100
98
  seed = 42
99
-
100
  def generate_colours(min_distance, seed):
101
  colour_mapping = {}
102
  all_models = selected_models
103
-
104
  for i in it.count():
105
  min_colour_distance = min_distance - i
106
  retries_left = 10 * len(all_models)
107
-
108
  for model_id in all_models:
109
  random.seed(hash(model_id) + i + seed)
110
  r, g, b = 0, 0, 0
111
  too_bright, similar_to_other_model = True, True
112
-
113
  while (too_bright or similar_to_other_model) and retries_left > 0:
114
  r, g, b = tuple(random.randint(0, 255) for _ in range(3))
115
  too_bright = np.min([r, g, b]) > 200
@@ -118,44 +129,40 @@ def create_radar_plot(selected_models):
118
  for colour in colour_mapping.values()
119
  )
120
  retries_left -= 1
121
-
122
  colour_mapping[model_id] = (r, g, b)
123
  if len(colour_mapping) == len(all_models):
124
  break
125
-
126
  return colour_mapping
127
 
128
  colour_mapping = generate_colours(MIN_COLOUR_DISTANCE_BETWEEN_MODELS, seed)
129
  fig = go.Figure()
130
-
131
  for _, model_data in models.iterrows():
132
  model_name = model_data["model"]
133
  if model_name not in selected_models:
134
  continue
135
-
136
  values = [model_data[metric] for metric in metrics]
137
- color = f'rgb{colour_mapping[model_name]}'
138
-
139
- fig.add_trace(go.Scatterpolar(
140
- r=values,
141
- theta=metric_labels,
142
- name=model_name,
143
- fill='toself',
144
- fillcolor=f'rgba{colour_mapping[model_name] + (0.6,)}',
145
- line=dict(color=color)
146
- ))
147
-
148
- fig.update_layout(
149
- polar=dict(
150
- radialaxis=dict(
151
- visible=True,
152
- range=[0, 1]
153
  )
154
- ),
 
 
 
155
  showlegend=True,
156
- title='Сравнение моделей на DeathMath',
157
  template="plotly_dark",
158
  )
159
-
160
- return fig
161
 
 
 
1
+ import itertools as it
2
+ import random
3
+
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
+ import plotly.graph_objects as go
7
+
8
+ from src.leaderboard.build_leaderboard import build_leaderboard_df
9
 
 
10
 
11
  def create_plot(selected_models):
12
  """
13
  Создает визуализацию для сравнения выбранных моделей по метрикам DeathMath
14
+
15
  Args:
16
  selected_models: Список названий моделей для отображения на графике
17
+
18
  Returns:
19
  matplotlib.figure.Figure: График для отображения в интерфейсе
20
  """
21
  # Получаем данные моделей из лидерборда
22
+ models_df = build_leaderboard_df()
23
+
24
  # Если нет выбранных моделей или данные не загружены, возвращаем пустой график
25
  if not selected_models or models_df.empty:
26
  fig, ax = plt.subplots(figsize=(10, 6))
27
+ ax.text(
28
+ 0.5,
29
+ 0.5,
30
+ "Нет данных для отображения",
31
+ horizontalalignment="center",
32
+ verticalalignment="center",
33
+ transform=ax.transAxes,
34
+ fontsize=14,
35
+ )
36
  ax.set_axis_off()
37
  return fig
38
+
39
  # Фильтруем DataFrame, чтобы оставить только выбранные модели
40
+ models_to_show = models_df[models_df["model"].isin(selected_models)]
41
+
42
  if models_to_show.empty:
43
  fig, ax = plt.subplots(figsize=(10, 6))
44
+ ax.text(
45
+ 0.5,
46
+ 0.5,
47
+ "Выбранные модели не найдены в данных",
48
+ horizontalalignment="center",
49
+ verticalalignment="center",
50
+ transform=ax.transAxes,
51
+ fontsize=14,
52
+ )
53
  ax.set_axis_off()
54
  return fig
55
+
56
  # Настройка бар-графика для сравнения моделей
57
  fig, ax = plt.subplots(figsize=(12, 8))
58
+
59
  # Ширина столбцов
60
  bar_width = 0.25
61
+
62
  # Позиции на оси x
63
  models_count = len(models_to_show)
64
  indices = np.arange(models_count)
65
+
66
  # Цветовая палитра
67
+ colors = ["#1f77b4", "#ff7f0e", "#2ca02c"]
68
+
69
  # Строим столбцы для разных метрик
70
+ ax.bar(indices - bar_width, models_to_show["math_score"], bar_width, label="RussianMath Score", color=colors[0])
71
+ ax.bar(indices, models_to_show["physics_score"], bar_width, label="RussianPhysics Score", color=colors[1])
72
+ ax.bar(indices + bar_width, models_to_show["score"], bar_width, label="Combined Score", color=colors[2])
73
+
 
 
 
74
  # Настройка осей и меток
75
+ ax.set_xlabel("Модели")
76
+ ax.set_ylabel("Баллы")
77
+ ax.set_title("Сравнение производительности моделей на DeathMath benchmark")
78
  ax.set_xticks(indices)
79
+ ax.set_xticklabels(models_to_show["model"], rotation=45, ha="right")
80
  ax.legend()
81
+
82
  # Ограничение значений по оси y от 0 до 1
83
  ax.set_ylim(0, 1.0)
84
+
85
  # Добавляем сетку для лучшей читаемости
86
+ ax.grid(axis="y", linestyle="--", alpha=0.7)
87
+
88
  # Обеспечиваем, чтобы все метки помещались
89
  plt.tight_layout()
90
+
91
  return fig
92
 
93
+
94
  def create_radar_plot(selected_models):
95
  """
96
  Создает радиальную диаграмму для сравнения выбранных моделей
97
+
98
  Args:
99
  selected_models: Список названий моделей для отображения на графике
100
+
101
  Returns:
102
  plotly.graph_objects.Figure: Интерактивный радиальный график
103
  """
104
+ models = build_leaderboard_df()
105
  metrics = ["math_score", "physics_score", "score"]
106
  metric_labels = ["RussianMath", "RussianPhysics", "Combined"]
107
+
108
  MIN_COLOUR_DISTANCE_BETWEEN_MODELS = 100
109
  seed = 42
110
+
111
  def generate_colours(min_distance, seed):
112
  colour_mapping = {}
113
  all_models = selected_models
114
+
115
  for i in it.count():
116
  min_colour_distance = min_distance - i
117
  retries_left = 10 * len(all_models)
118
+
119
  for model_id in all_models:
120
  random.seed(hash(model_id) + i + seed)
121
  r, g, b = 0, 0, 0
122
  too_bright, similar_to_other_model = True, True
123
+
124
  while (too_bright or similar_to_other_model) and retries_left > 0:
125
  r, g, b = tuple(random.randint(0, 255) for _ in range(3))
126
  too_bright = np.min([r, g, b]) > 200
 
129
  for colour in colour_mapping.values()
130
  )
131
  retries_left -= 1
132
+
133
  colour_mapping[model_id] = (r, g, b)
134
  if len(colour_mapping) == len(all_models):
135
  break
136
+
137
  return colour_mapping
138
 
139
  colour_mapping = generate_colours(MIN_COLOUR_DISTANCE_BETWEEN_MODELS, seed)
140
  fig = go.Figure()
141
+
142
  for _, model_data in models.iterrows():
143
  model_name = model_data["model"]
144
  if model_name not in selected_models:
145
  continue
146
+
147
  values = [model_data[metric] for metric in metrics]
148
+ color = f"rgb{colour_mapping[model_name]}"
149
+
150
+ fig.add_trace(
151
+ go.Scatterpolar(
152
+ r=values,
153
+ theta=metric_labels,
154
+ name=model_name,
155
+ fill="toself",
156
+ fillcolor=f"rgba{colour_mapping[model_name] + (0.6,)}",
157
+ line=dict(color=color),
 
 
 
 
 
 
158
  )
159
+ )
160
+
161
+ fig.update_layout(
162
+ polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
163
  showlegend=True,
164
+ title="Сравнение моделей на DeathMath",
165
  template="plotly_dark",
166
  )
 
 
167
 
168
+ return fig
src/scripts/create_request_file.py DELETED
@@ -1,92 +0,0 @@
1
- import json
2
- import os
3
- import pprint
4
- from datetime import datetime, timezone
5
-
6
- import click
7
- from colorama import Fore
8
- from huggingface_hub import HfApi, snapshot_download
9
-
10
- from src.display.utils import ModelType, WeightType
11
- from src.submission.check_validity import get_model_size
12
-
13
- EVAL_REQUESTS_PATH = "eval-queue"
14
- QUEUE_REPO = "open-llm-leaderboard/requests"
15
-
16
- precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
17
- model_types = [e.name for e in ModelType]
18
- weight_types = [e.name for e in WeightType]
19
-
20
-
21
- def main():
22
- api = HfApi()
23
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
24
- snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
25
-
26
- model_name = click.prompt("Enter model name")
27
- revision = click.prompt("Enter revision", default="main")
28
- precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
29
- model_type = click.prompt("Enter model type", type=click.Choice(model_types))
30
- weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
31
- base_model = click.prompt("Enter base model", default="")
32
- status = click.prompt("Enter status", default="FINISHED")
33
-
34
- try:
35
- model_info = api.model_info(repo_id=model_name, revision=revision)
36
- except Exception as e:
37
- print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
38
- return 1
39
-
40
- model_size = get_model_size(model_info=model_info, precision=precision)
41
-
42
- try:
43
- license = model_info.cardData["license"]
44
- except Exception:
45
- license = "?"
46
-
47
- eval_entry = {
48
- "model": model_name,
49
- "base_model": base_model,
50
- "revision": model_info.sha, # force to use the exact model commit
51
- "private": False,
52
- "precision": precision,
53
- "weight_type": weight_type,
54
- "status": status,
55
- "submitted_time": current_time,
56
- "model_type": model_type,
57
- "likes": model_info.likes,
58
- "params": model_size,
59
- "license": license,
60
- }
61
-
62
- user_name = ""
63
- model_path = model_name
64
- if "/" in model_name:
65
- user_name = model_name.split("/")[0]
66
- model_path = model_name.split("/")[1]
67
-
68
- pprint.pprint(eval_entry)
69
-
70
- if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
71
- click.echo("continuing...")
72
-
73
- out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
74
- os.makedirs(out_dir, exist_ok=True)
75
- out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
76
-
77
- with open(out_path, "w") as f:
78
- f.write(json.dumps(eval_entry))
79
-
80
- api.upload_file(
81
- path_or_fileobj=out_path,
82
- path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
83
- repo_id=QUEUE_REPO,
84
- repo_type="dataset",
85
- commit_message=f"Add {model_name} to eval queue",
86
- )
87
- else:
88
- click.echo("aborting...")
89
-
90
-
91
- if __name__ == "__main__":
92
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/scripts/update_all_request_files.py DELETED
@@ -1,96 +0,0 @@
1
- import json
2
- import os
3
- import subprocess
4
-
5
- from src.envs import EVAL_REQUESTS_PATH, H4_TOKEN
6
- from src.submission.check_validity import check_model_card, get_model_tags, is_model_on_hub
7
-
8
-
9
- def update_one_model(model_id, data, models_on_the_hub):
10
- # Model no longer on the hub at all
11
- if model_id not in models_on_the_hub:
12
- data["still_on_hub"] = False
13
- data["likes"] = 0
14
- data["downloads"] = 0
15
- data["created_at"] = ""
16
- data["tags"] = []
17
- return data
18
-
19
- # Grabbing model parameters
20
- model_cfg = models_on_the_hub[model_id]
21
- data["likes"] = model_cfg.likes
22
- data["downloads"] = model_cfg.downloads
23
- data["created_at"] = str(model_cfg.created_at)
24
- data["license"] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
25
-
26
- # Grabbing model details
27
- model_name = model_id
28
- if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
29
- if isinstance(model_cfg.card_data.base_model, str):
30
- model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
31
- still_on_hub, _, _ = is_model_on_hub(
32
- model_name=model_name,
33
- revision=data.get("revision"),
34
- trust_remote_code=True,
35
- test_tokenizer=False,
36
- token=H4_TOKEN,
37
- )
38
- # If the model doesn't have a model card or a license, we consider it's deleted
39
- if still_on_hub:
40
- try:
41
- status, _, model_card = check_model_card(model_id)
42
- if status is False:
43
- still_on_hub = False
44
- except Exception:
45
- model_card = None
46
- still_on_hub = False
47
- data["still_on_hub"] = still_on_hub
48
-
49
- tags = get_model_tags(model_card, model_id) if still_on_hub else []
50
-
51
- data["tags"] = tags
52
- return data
53
-
54
-
55
- def update_models(file_path, models_on_the_hub):
56
- """
57
- Search through all JSON files in the specified root folder and its subfolders,
58
- and update the likes key in JSON dict from value of input dict
59
- """
60
- seen_models = []
61
- with open(file_path, "r") as f:
62
- model_infos = json.load(f)
63
- for model_id in model_infos.keys():
64
- seen_models.append(model_id)
65
- model_infos[model_id] = update_one_model(
66
- model_id=model_id, data=model_infos[model_id], models_on_the_hub=models_on_the_hub
67
- )
68
-
69
- # If new requests files have been created since we started all this
70
- # we grab them
71
- all_models = []
72
- try:
73
- for ix, (root, _, files) in enumerate(os.walk(EVAL_REQUESTS_PATH)):
74
- if ix == 0:
75
- continue
76
- for file in files:
77
- if "eval_request" in file:
78
- path = root.split("/")[-1] + "/" + file.split("_eval_request")[0]
79
- all_models.append(path)
80
- except Exception as e:
81
- print(e)
82
- pass
83
-
84
- for model_id in all_models:
85
- if model_id not in seen_models:
86
- model_infos[model_id] = update_one_model(model_id=model_id, data={}, models_on_the_hub=models_on_the_hub)
87
-
88
- with open(file_path, "w") as f:
89
- json.dump(model_infos, f, indent=2)
90
-
91
-
92
- def update_dynamic_files():
93
- # from gen import gen_answer,gen_judgment\
94
- subprocess.Popen("python3 ../gen/gen_judgement.py")
95
-
96
- subprocess.Popen("python3 ../gen/show_result.py --output")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,178 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
10
- from transformers import AutoConfig, AutoTokenizer
11
-
12
- from src.envs import HAS_HIGHER_RATE_LIMIT
13
-
14
-
15
- # ht to @Wauplin, thank you for the snippet!
16
- # See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
17
- def check_model_card(repo_id: str) -> tuple[bool, str]:
18
- # Returns operation status, and error message
19
- try:
20
- card = ModelCard.load(repo_id)
21
- except huggingface_hub.utils.EntryNotFoundError:
22
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
23
-
24
- # Enforce license metadata
25
- if card.data.license is None:
26
- if not ("license_name" in card.data and "license_link" in card.data):
27
- return (
28
- False,
29
- (
30
- "License not found. Please add a license to your model card using the `license` metadata or a"
31
- " `license_name`/`license_link` pair."
32
- ),
33
- None,
34
- )
35
-
36
- # Enforce card content
37
- if len(card.text) < 200:
38
- return False, "Please add a description to your model card, it is too short.", None
39
-
40
- return True, "", card
41
-
42
-
43
- def is_model_on_hub(
44
- model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
45
- ) -> tuple[bool, str, AutoConfig]:
46
- try:
47
- config = AutoConfig.from_pretrained(
48
- model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
49
- ) # , force_download=True)
50
- if test_tokenizer:
51
- try:
52
- AutoTokenizer.from_pretrained(
53
- model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
54
- )
55
- except ValueError as e:
56
- return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
57
- except Exception:
58
- return (
59
- False,
60
- "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
61
- None,
62
- )
63
- return True, None, config
64
-
65
- except ValueError:
66
- return (
67
- False,
68
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
69
- None,
70
- )
71
-
72
- except Exception as e:
73
- if "You are trying to access a gated repo." in str(e):
74
- return True, "uses a gated model.", None
75
- return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
76
-
77
-
78
- def get_model_size(model_info: ModelInfo, precision: str):
79
- size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
80
- safetensors = None
81
- try:
82
- safetensors = get_safetensors_metadata(model_info.id)
83
- except Exception as e:
84
- print(e)
85
-
86
- if safetensors is not None:
87
- model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
88
- else:
89
- try:
90
- size_match = re.search(size_pattern, model_info.id.lower())
91
- model_size = size_match.group(0)
92
- model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
93
- except AttributeError:
94
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
95
-
96
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
97
- model_size = size_factor * model_size
98
- return model_size
99
-
100
-
101
- def get_model_arch(model_info: ModelInfo):
102
- return model_info.config.get("architectures", "Unknown")
103
-
104
-
105
- def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
106
- if org_or_user not in users_to_submission_dates:
107
- return True, ""
108
- submission_dates = sorted(users_to_submission_dates[org_or_user])
109
-
110
- time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
111
- submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
112
-
113
- num_models_submitted_in_period = len(submissions_after_timelimit)
114
- if org_or_user in HAS_HIGHER_RATE_LIMIT:
115
- rate_limit_quota = 2 * rate_limit_quota
116
-
117
- if num_models_submitted_in_period > rate_limit_quota:
118
- error_msg = f"Organisation or user `{org_or_user}`"
119
- error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
120
- error_msg += f"in the last {rate_limit_period} days.\n"
121
- error_msg += (
122
- "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
123
- )
124
- return False, error_msg
125
- return True, ""
126
-
127
-
128
- def already_submitted_models(requested_models_dir: str) -> set[str]:
129
- depth = 1
130
- file_names = []
131
- users_to_submission_dates = defaultdict(list)
132
-
133
- for root, _, files in os.walk(requested_models_dir):
134
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
135
- if current_depth == depth:
136
- for file in files:
137
- if not file.endswith(".json"):
138
- continue
139
- with open(os.path.join(root, file), "r") as f:
140
- info = json.load(f)
141
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
142
-
143
- # Select organisation
144
- if info["model"].count("/") == 0 or "submitted_time" not in info:
145
- continue
146
- organisation, _ = info["model"].split("/")
147
- users_to_submission_dates[organisation].append(info["submitted_time"])
148
-
149
- return set(file_names), users_to_submission_dates
150
-
151
-
152
- def get_model_tags(model_card, model: str):
153
- is_merge_from_metadata = False
154
- is_moe_from_metadata = False
155
-
156
- tags = []
157
- if model_card is None:
158
- return tags
159
- if model_card.data.tags:
160
- is_merge_from_metadata = any(
161
- [tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]
162
- )
163
- is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
164
-
165
- is_merge_from_model_card = any(
166
- keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]
167
- )
168
- if is_merge_from_model_card or is_merge_from_metadata:
169
- tags.append("merge")
170
- is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
171
- # Hardcoding because of gating problem
172
- if "Qwen/Qwen1.5-32B" in model:
173
- is_moe_from_model_card = False
174
- is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
175
- if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
176
- tags.append("moe")
177
-
178
- return tags
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,171 +0,0 @@
1
- from src.display.formatting import styled_message
2
- # from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
3
- # from src.submission.check_validity import (
4
- # already_submitted_models,
5
- # check_model_card,
6
- # get_model_size,
7
- # get_model_tags,
8
- # is_model_on_hub,
9
- # user_submission_permission,
10
- # )
11
-
12
- REQUESTED_MODELS = None
13
- USERS_TO_SUBMISSION_DATES = None
14
-
15
-
16
- def add_new_eval(
17
- model: str,
18
- ):
19
- # global REQUESTED_MODELS
20
- # global USERS_TO_SUBMISSION_DATES
21
- # if not REQUESTED_MODELS:
22
- # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
23
-
24
- # user_name = ""
25
- # model_path = model
26
- # if "/" in model:
27
- # user_name = model.split("/")[0]
28
- # model_path = model.split("/")[1]
29
-
30
- # # precision = precision.split(" ")[0]
31
- # current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
32
-
33
- # if model_type is None or model_type == "":
34
- # return styled_error("Please select a model type.")
35
-
36
- # # Is the user rate limited?
37
- # if user_name != "":
38
- # user_can_submit, error_msg = user_submission_permission(
39
- # user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
40
- # )
41
- # if not user_can_submit:
42
- # return styled_error(error_msg)
43
-
44
- # Did the model authors forbid its submission to the leaderboard?
45
- # if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
46
- # return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
47
-
48
- # if model == "CohereForAI/c4ai-command-r-plus":
49
- # return styled_warning(
50
- # "This model cannot be submitted manually on the leaderboard before the transformers release."
51
- # )
52
-
53
- # # Does the model actually exist?
54
- # if revision == "":
55
- # revision = "main"
56
-
57
- # # Is the model on the hub?
58
- # if weight_type in ["Delta", "Adapter"]:
59
- # base_model_on_hub, error, _ = is_model_on_hub(
60
- # model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True
61
- # )
62
- # if not base_model_on_hub:
63
- # return styled_error(f'Base model "{base_model}" {error}')
64
-
65
- # architecture = "?"
66
- # downloads = 0
67
- # created_at = ""
68
- # if not weight_type == "Adapter":
69
- # model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
70
- # if not model_on_hub or model_config is None:
71
- # return styled_error(f'Model "{model}" {error}')
72
- # if model_config is not None:
73
- # architectures = getattr(model_config, "architectures", None)
74
- # if architectures:
75
- # architecture = ";".join(architectures)
76
- # downloads = getattr(model_config, "downloads", 0)
77
- # created_at = getattr(model_config, "created_at", "")
78
-
79
- # Is the model info correctly filled?
80
- # try:
81
- # model_info = API.model_info(repo_id=model, revision=revision)
82
- # except Exception:
83
- # return styled_error("Could not get your model information. Please fill it up properly.")
84
-
85
- # model_size = get_model_size(model_info=model_info, precision=precision)
86
-
87
- # Were the model card and license filled?
88
- # try:
89
- # license = model_info.cardData["license"]
90
- # except Exception:
91
- # return styled_error("Please select a license for your model")
92
-
93
- # modelcard_OK, error_msg, model_card = check_model_card(model)
94
- # if not modelcard_OK:
95
- # return styled_error(error_msg)
96
-
97
- # tags = get_model_tags(model_card, model)
98
-
99
- # # Seems good, creating the eval
100
- # print("Adding new eval")
101
-
102
- # eval_entry = {
103
- # "model": model,
104
- # # "base_model": base_model,
105
- # # "revision": model_info.sha, # force to use the exact model commit
106
- # # "private": private,
107
- # # "precision": precision,
108
- # # "params": model_size,
109
- # # "architectures": architecture,
110
- # # "weight_type": weight_type,
111
- # "status": "PENDING",
112
- # # "submitted_time": current_time,
113
- # # "model_type": model_type,
114
- # "job_id": -1,
115
- # "job_start_time": None,
116
- # }
117
-
118
- # supplementary_info = {
119
- # "likes": model_info.likes,
120
- # "license": license,
121
- # "still_on_hub": True,
122
- # "tags": tags,
123
- # "downloads": downloads,
124
- # "created_at": created_at,
125
- # }
126
-
127
- # # Check for duplicate submission
128
- # if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
129
- # return styled_warning("This model has been already submitted.")
130
-
131
- # print("Creating eval file")
132
- # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
133
- # os.makedirs(OUT_DIR, exist_ok=True)
134
- # out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
135
-
136
- # with open(out_path, "w") as f:
137
- # f.write(json.dumps(eval_entry))
138
-
139
- # print("Uploading eval file")
140
- # API.upload_file(
141
- # path_or_fileobj=out_path,
142
- # path_in_repo=out_path.split("eval-queue/")[1],
143
- # repo_id=QUEUE_REPO,
144
- # repo_type="dataset",
145
- # commit_message=f"Add {model} to eval queue",
146
- # )
147
-
148
- # We want to grab the latest version of the submission file to not accidentally overwrite it
149
- # snapshot_download(
150
- # repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
151
- # )
152
-
153
- # with open(DYNAMIC_INFO_FILE_PATH) as f:
154
- # all_supplementary_info = json.load(f)
155
-
156
- # # all_supplementary_info[model] = supplementary_info
157
- # with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
158
- # json.dump(all_supplementary_info, f, indent=2)
159
-
160
- # API.upload_file(
161
- # path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
162
- # path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
163
- # repo_id=DYNAMIC_INFO_REPO,
164
- # repo_type="dataset",
165
- # commit_message=f"Add {model} to dynamic info queue",
166
- # )
167
-
168
- # # Remove the local file
169
- # os.remove(out_path)
170
-
171
- return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/tools/collections.py DELETED
@@ -1,76 +0,0 @@
1
- import pandas as pd
2
- from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
3
- from huggingface_hub.utils._errors import HfHubHTTPError
4
- from pandas import DataFrame
5
-
6
- from src.display.utils import AutoEvalColumn, ModelType
7
- from src.envs import H4_TOKEN, PATH_TO_COLLECTION
8
-
9
- # Specific intervals for the collections
10
- intervals = {
11
- "1B": pd.Interval(0, 1.5, closed="right"),
12
- "3B": pd.Interval(2.5, 3.5, closed="neither"),
13
- "7B": pd.Interval(6, 8, closed="neither"),
14
- "13B": pd.Interval(10, 14, closed="neither"),
15
- "30B": pd.Interval(25, 35, closed="neither"),
16
- "65B": pd.Interval(60, 70, closed="neither"),
17
- }
18
-
19
-
20
- def _filter_by_type_and_size(df, model_type, size_interval):
21
- """Filter DataFrame by model type and parameter size interval."""
22
- type_emoji = model_type.value.symbol[0]
23
- filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
24
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
25
- mask = params_column.apply(lambda x: x in size_interval)
26
- return filtered_df.loc[mask]
27
-
28
-
29
- def _add_models_to_collection(collection, models, model_type, size):
30
- """Add best models to the collection and update positions."""
31
- cur_len_collection = len(collection.items)
32
- for ix, model in enumerate(models, start=1):
33
- try:
34
- collection = add_collection_item(
35
- PATH_TO_COLLECTION,
36
- item_id=model,
37
- item_type="model",
38
- exists_ok=True,
39
- note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
40
- token=H4_TOKEN,
41
- )
42
- # Ensure position is correct if item was added
43
- if len(collection.items) > cur_len_collection:
44
- item_object_id = collection.items[-1].item_object_id
45
- update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
46
- cur_len_collection = len(collection.items)
47
- break # assuming we only add the top model
48
- except HfHubHTTPError:
49
- continue
50
-
51
-
52
- def update_collections(df: DataFrame):
53
- """Update collections by filtering and adding the best models."""
54
- collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
55
- cur_best_models = []
56
-
57
- for model_type in ModelType:
58
- if not model_type.value.name:
59
- continue
60
- for size, interval in intervals.items():
61
- filtered_df = _filter_by_type_and_size(df, model_type, interval)
62
- best_models = list(
63
- filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10]
64
- )
65
- print(model_type.value.symbol, size, best_models)
66
- _add_models_to_collection(collection, best_models, model_type, size)
67
- cur_best_models.extend(best_models)
68
-
69
- # Cleanup
70
- existing_models = {item.item_id for item in collection.items}
71
- to_remove = existing_models - set(cur_best_models)
72
- for item_id in to_remove:
73
- try:
74
- delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
75
- except HfHubHTTPError:
76
- continue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/tools/model_backlinks.py DELETED
@@ -1,1309 +0,0 @@
1
- models = [
2
- "uni-tianyan/Uni-TianYan",
3
- "fangloveskari/ORCA_LLaMA_70B_QLoRA",
4
- "garage-bAInd/Platypus2-70B-instruct",
5
- "upstage/Llama-2-70b-instruct-v2",
6
- "fangloveskari/Platypus_QLoRA_LLaMA_70b",
7
- "yeontaek/llama-2-70B-ensemble-v5",
8
- "TheBloke/Genz-70b-GPTQ",
9
- "TheBloke/Platypus2-70B-Instruct-GPTQ",
10
- "psmathur/model_007",
11
- "yeontaek/llama-2-70B-ensemble-v4",
12
- "psmathur/orca_mini_v3_70b",
13
- "ehartford/Samantha-1.11-70b",
14
- "MayaPH/GodziLLa2-70B",
15
- "psmathur/model_007_v2",
16
- "chargoddard/MelangeA-70b",
17
- "ehartford/Samantha-1.1-70b",
18
- "psmathur/model_009",
19
- "upstage/Llama-2-70b-instruct",
20
- "yeontaek/llama-2-70B-ensemble-v7",
21
- "yeontaek/llama-2-70B-ensemble-v6",
22
- "chargoddard/MelangeB-70b",
23
- "yeontaek/llama-2-70B-ensemble-v3",
24
- "chargoddard/MelangeC-70b",
25
- "garage-bAInd/Camel-Platypus2-70B",
26
- "yeontaek/llama-2-70B-ensemble-v2",
27
- "garage-bAInd/Camel-Platypus2-70B",
28
- "migtissera/Synthia-70B-v1.2",
29
- "v2ray/LLaMA-2-Wizard-70B-QLoRA",
30
- "quantumaikr/llama-2-70b-fb16-orca-chat-10k",
31
- "v2ray/LLaMA-2-Wizard-70B-QLoRA",
32
- "stabilityai/StableBeluga2",
33
- "quantumaikr/llama-2-70b-fb16-guanaco-1k",
34
- "garage-bAInd/Camel-Platypus2-70B",
35
- "migtissera/Synthia-70B-v1.1",
36
- "migtissera/Synthia-70B",
37
- "psmathur/model_101",
38
- "augtoma/qCammel70",
39
- "augtoma/qCammel-70",
40
- "augtoma/qCammel-70v1",
41
- "augtoma/qCammel-70x",
42
- "augtoma/qCammel-70-x",
43
- "jondurbin/airoboros-l2-70b-gpt4-1.4.1",
44
- "dfurman/llama-2-70b-dolphin-peft",
45
- "jondurbin/airoboros-l2-70b-2.1",
46
- "TheBloke/llama-2-70b-Guanaco-QLoRA-fp16",
47
- "quantumaikr/QuantumLM-llama2-70B-Korean-LoRA",
48
- "quantumaikr/quantumairk-llama-2-70B-instruct",
49
- "psmathur/model_420",
50
- "psmathur/model_51",
51
- "garage-bAInd/Camel-Platypus2-70B",
52
- "TheBloke/Airoboros-L2-70B-2.1-GPTQ",
53
- "OpenAssistant/llama2-70b-oasst-sft-v10",
54
- "garage-bAInd/Platypus2-70B",
55
- "liuxiang886/llama2-70B-qlora-gpt4",
56
- "upstage/llama-65b-instruct",
57
- "quantumaikr/llama-2-70b-fb16-korean",
58
- "NousResearch/Nous-Hermes-Llama2-70b",
59
- "v2ray/LLaMA-2-Jannie-70B-QLoRA",
60
- "jondurbin/airoboros-l2-70b-gpt4-m2.0",
61
- "jondurbin/airoboros-l2-70b-gpt4-m2.0",
62
- "OpenAssistant/llama2-70b-oasst-sft-v10",
63
- "yeontaek/llama-2-70B-ensemble-v8",
64
- "jondurbin/airoboros-l2-70b-gpt4-2.0",
65
- "jarradh/llama2_70b_chat_uncensored",
66
- "WizardLM/WizardMath-70B-V1.0",
67
- "jordiclive/Llama-2-70b-oasst-1-200",
68
- "WizardLM/WizardMath-70B-V1.0",
69
- "jondurbin/airoboros-l2-70b-gpt4-2.0",
70
- "OpenLemur/lemur-70b-chat-v1",
71
- "tiiuae/falcon-180B",
72
- "tiiuae/falcon-180B",
73
- "stabilityai/StableBeluga1-Delta",
74
- "psmathur/model_42_70b",
75
- "psmathur/test_42_70b",
76
- "TheBloke/fiction.live-Kimiko-V2-70B-fp16",
77
- "tiiuae/falcon-180B",
78
- "WizardLM/WizardMath-70B-V1.0",
79
- "tiiuae/falcon-180B-chat",
80
- "jondurbin/airoboros-l2-70b-gpt4-2.0",
81
- "ehartford/samantha-1.1-llama-33b",
82
- "ajibawa-2023/scarlett-33b",
83
- "ddobokki/Llama-2-70b-orca-200k",
84
- "TheBloke/gpt4-alpaca-lora_mlp-65B-HF",
85
- "tiiuae/falcon-180B-chat",
86
- "tiiuae/falcon-180B-chat",
87
- "tiiuae/falcon-180B",
88
- "TheBloke/Lemur-70B-Chat-v1-GPTQ",
89
- "NousResearch/Nous-Puffin-70B",
90
- "WizardLM/WizardLM-70B-V1.0",
91
- "WizardLM/WizardMath-70B-V1.0",
92
- "meta-llama/Llama-2-70b-hf",
93
- "TheBloke/Llama-2-70B-fp16",
94
- "Weyaxi/llama-2-alpacagpt4-1000step",
95
- "WizardLM/WizardLM-70B-V1.0",
96
- "simsim314/WizardLM-70B-V1.0-HF",
97
- "simsim314/WizardLM-70B-V1.0-HF",
98
- "WizardLM/WizardLM-70B-V1.0",
99
- "openbmb/UltraLM-65b",
100
- "psmathur/model_420_preview",
101
- "WizardLM/WizardLM-70B-V1.0",
102
- "simsim314/WizardLM-70B-V1.0-HF",
103
- "OpenBuddy/openbuddy-llama2-70b-v10.1-bf16",
104
- "upstage/llama-30b-instruct-2048",
105
- "jondurbin/airoboros-65b-gpt4-1.2",
106
- "TheBloke/guanaco-65B-HF",
107
- "jondurbin/airoboros-65b-gpt4-1.3",
108
- "meta-llama/Llama-2-70b-chat-hf",
109
- "ValiantLabs/ShiningValiant",
110
- "Faradaylab/Aria-70B",
111
- "lilloukas/GPlatty-30B",
112
- "TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16",
113
- "jondurbin/airoboros-65b-gpt4-1.4-peft",
114
- "jondurbin/airoboros-65b-gpt4-1.4",
115
- "jondurbin/airoboros-65b-gpt4-2.0",
116
- "TheBloke/WizardLM-70B-V1.0-GPTQ",
117
- "TheBloke/WizardLM-70B-V1.0-GPTQ",
118
- "ariellee/SuperPlatty-30B",
119
- "jondurbin/airoboros-65b-gpt4-1.4",
120
- "jondurbin/airoboros-65b-gpt4-2.0",
121
- "yeontaek/llama-2-70b-IA3-guanaco",
122
- "CalderaAI/30B-Lazarus",
123
- "Aspik101/trurl-2-13b-pl-instruct_unload",
124
- "ehartford/WizardLM-33B-V1.0-Uncensored",
125
- "ehartford/WizardLM-33B-V1.0-Uncensored",
126
- "OpenBuddy/openbuddy-llama-65b-v8-bf16",
127
- "Aspik101/llama-30b-instruct-2048-PL-lora",
128
- "h2oai/h2ogpt-research-oasst1-llama-65b",
129
- "Aspik101/llama-30b-instruct-2048-PL-lora",
130
- "CalderaAI/30B-Epsilon",
131
- "Aspik101/llama-30b-2048-instruct-PL-lora_unload",
132
- "jondurbin/airoboros-65b-gpt4-m2.0",
133
- "jondurbin/airoboros-65b-gpt4-m2.0",
134
- "Aeala/Alpaca-elina-65b",
135
- "TheBloke/robin-65b-v2-fp16",
136
- "TheBloke/gpt4-alpaca-lora-30b-HF",
137
- "TheBloke/Llama-2-70B-chat-GPTQ",
138
- "upstage/llama-30b-instruct",
139
- "OpenLemur/lemur-70b-v1",
140
- "lmsys/vicuna-33b-v1.3",
141
- "ausboss/llama-30b-supercot",
142
- "ai-business/Luban-13B",
143
- "Henk717/airochronos-33B",
144
- "lmsys/vicuna-33b-v1.3",
145
- "Henk717/airochronos-33B",
146
- "bavest/fin-llama-33b-merged",
147
- "jondurbin/airoboros-33b-gpt4-1.4",
148
- "YeungNLP/firefly-llama-30b",
149
- "Aspik101/30B-Lazarus-instruct-PL-lora_unload",
150
- "uukuguy/speechless-llama2-luban-orca-platypus-13b",
151
- "xxyyy123/test_merge_p_ov1_w0.66_w0.5_n1",
152
- "jondurbin/airoboros-33b-gpt4-1.2",
153
- "TheBloke/alpaca-lora-65B-HF",
154
- "bofenghuang/vigogne-33b-instruct",
155
- "yeontaek/llama-2-13B-ensemble-v5",
156
- "garage-bAInd/Platypus-30B",
157
- "Open-Orca/OpenOrca-Platypus2-13B",
158
- "kajdun/viwaai-30b_v4",
159
- "lilloukas/Platypus-30B",
160
- "Open-Orca/OpenOrca-Platypus2-13B",
161
- "Henk717/chronoboros-33B",
162
- "jondurbin/airoboros-33b-2.1",
163
- "HiTZ/alpaca-lora-65b-en-pt-es-ca",
164
- "quantumaikr/QuantumLM-70B-hf",
165
- "uukuguy/speechless-llama2-13b",
166
- "uukuguy/speechless-llama2-hermes-orca-platypus-13b",
167
- "openaccess-ai-collective/manticore-30b-chat-pyg-alpha",
168
- "LLMs/WizardLM-30B-V1.0",
169
- "TheBloke/WizardLM-30B-fp16",
170
- "openaccess-ai-collective/hippogriff-30b-chat",
171
- "concedo/Vicuzard-30B-Uncensored",
172
- "TFLai/OpenOrca-Platypus2-13B-QLoRA-0.80-epoch",
173
- "huggingface/llama-65b",
174
- "huggyllama/llama-65b",
175
- "gaodrew/gaodrew-llama-30b-instruct-2048-Open-Platypus-100steps",
176
- "uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
177
- "Sao10K/Mythical-Destroyer-V2-L2-13B",
178
- "camel-ai/CAMEL-33B-Combined-Data",
179
- "dsvv-cair/alpaca-cleaned-llama-30b-bf16",
180
- "MetaIX/GPT4-X-Alpasta-30b",
181
- "garage-bAInd/Stable-Platypus2-13B",
182
- "TFLai/Luban-Platypus2-13B-QLora-0.80-epoch",
183
- "TheBloke/OpenOrca-Platypus2-13B-GPTQ",
184
- "IkariDev/Athena-tmp",
185
- "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
186
- "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
187
- "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
188
- "psmathur/model_007_13b_v2",
189
- "Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload",
190
- "jondurbin/airoboros-33b-gpt4-m2.0",
191
- "Sao10K/Mythical-Destroyer-L2-13B",
192
- "TheBloke/Wizard-Vicuna-30B-Uncensored-fp16",
193
- "ehartford/Wizard-Vicuna-30B-Uncensored",
194
- "TFLai/Nova-13B",
195
- "TheBloke/robin-33B-v2-fp16",
196
- "totally-not-an-llm/PuddleJumper-13b",
197
- "Aeala/VicUnlocked-alpaca-30b",
198
- "Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf",
199
- "jondurbin/airoboros-33b-gpt4",
200
- "jondurbin/airoboros-33b-gpt4-m2.0",
201
- "tiiuae/falcon-40b-instruct",
202
- "psmathur/orca_mini_v3_13b",
203
- "Aeala/GPT4-x-AlpacaDente-30b",
204
- "MayaPH/GodziLLa-30B",
205
- "jondurbin/airoboros-33b-gpt4-m2.0",
206
- "TFLai/SpeechlessV1-Nova-13B",
207
- "yeontaek/llama-2-13B-ensemble-v4",
208
- "ajibawa-2023/carl-33b",
209
- "jondurbin/airoboros-33b-gpt4-2.0",
210
- "TFLai/Stable-Platypus2-13B-QLoRA-0.80-epoch",
211
- "jondurbin/airoboros-33b-gpt4-1.3",
212
- "TehVenom/oasst-sft-6-llama-33b-xor-MERGED-16bit",
213
- "TFLai/OrcaMini-Platypus2-13B-QLoRA-0.80-epoch",
214
- "jondurbin/airoboros-33b-gpt4-2.0",
215
- "chargoddard/Chronorctypus-Limarobormes-13b",
216
- "jondurbin/airoboros-33b-gpt4-1.3",
217
- "Open-Orca/OpenOrca-Platypus2-13B",
218
- "FelixChao/vicuna-33b-coder",
219
- "FelixChao/vicuna-33b-coder",
220
- "Gryphe/MythoMix-L2-13b",
221
- "Aeala/Enterredaas-33b",
222
- "yeontaek/llama-2-13B-ensemble-v1",
223
- "TFLai/OpenOrcaPlatypus2-Platypus2-13B-QLora-0.80-epoch",
224
- "TFLai/Ensemble5-Platypus2-13B-QLora-0.80-epoch",
225
- "yeontaek/llama-2-13B-ensemble-v3",
226
- "TFLai/MythoMix-Platypus2-13B-QLoRA-0.80-epoch",
227
- "yihan6324/llama2-13b-instructmining-40k-sharegpt",
228
- "timdettmers/guanaco-33b-merged",
229
- "TFLai/EnsembleV5-Nova-13B",
230
- "circulus/Llama-2-13b-orca-v1",
231
- "Undi95/ReMM-SLERP-L2-13B",
232
- "Gryphe/MythoMax-L2-13b",
233
- "stabilityai/StableBeluga-13B",
234
- "circulus/Llama-2-13b-orca-v1",
235
- "ehartford/WizardLM-30B-Uncensored",
236
- "The-Face-Of-Goonery/huginnv1.2",
237
- "TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ",
238
- "Sao10K/Stheno-L2-13B",
239
- "bofenghuang/vigogne-2-13b-instruct",
240
- "The-Face-Of-Goonery/Huginn-13b-FP16",
241
- "grimpep/L2-MythoMax22b-instruct-Falseblock",
242
- "TFLai/Nous-Hermes-Platypus2-13B-QLoRA-0.80-epoch",
243
- "yeontaek/Platypus2xOpenOrca-13B-IA3-v4",
244
- "yeontaek/Platypus2xOpenOrca-13B-IA3",
245
- "yeontaek/Platypus2xOpenOrca-13B-IA3-ensemble",
246
- "Open-Orca/LlongOrca-13B-16k",
247
- "Sao10K/Stheno-Inverted-L2-13B",
248
- "garage-bAInd/Camel-Platypus2-13B",
249
- "digitous/Alpacino30b",
250
- "NousResearch/Nous-Hermes-Llama2-13b",
251
- "yeontaek/Platypus2xOpenOrca-13B-IA3-v3",
252
- "TFLai/MythicalDestroyerV2-Platypus2-13B-QLora-0.80-epoch",
253
- "TheBloke/VicUnlocked-30B-LoRA-HF",
254
- "Undi95/Nous-Hermes-13B-Code",
255
- "The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16",
256
- "NousResearch/Nous-Hermes-Llama2-13b",
257
- "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b",
258
- "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ",
259
- "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
260
- "Austism/chronos-hermes-13b-v2",
261
- "yeontaek/Platypus2xOpenOrca-13B-IA3-v2.1",
262
- "yeontaek/Platypus2xOpenOrca-13B-IA3-v2",
263
- "Gryphe/MythoLogic-L2-13b",
264
- "augtoma/qCammel-13",
265
- "YeungNLP/firefly-llama2-13b-v1.2",
266
- "Aspik101/StableBeluga-13B-instruct-PL-lora_unload",
267
- "andreaskoepf/llama2-13b-megacode2_min100",
268
- "rombodawg/LosslessMegaCoder-llama2-13b-mini",
269
- "yulan-team/YuLan-Chat-2-13b-fp16",
270
- "elinas/chronos-33b",
271
- "YeungNLP/firefly-llama2-13b",
272
- "Sao10K/Medusa-13b",
273
- "OptimalScale/robin-65b-v2-delta",
274
- "minlik/chinese-alpaca-33b-merged",
275
- "OpenAssistant/llama2-13b-megacode2-oasst",
276
- "TheBloke/OpenAssistant-SFT-7-Llama-30B-HF",
277
- "Undi95/UndiMix-v1-13b",
278
- "ehartford/Samantha-1.11-13b",
279
- "beaugogh/Llama2-13b-sharegpt4",
280
- "Aeala/GPT4-x-AlpacaDente2-30b",
281
- "luffycodes/nash-vicuna-13b-v1dot5-ep2-w-rag-w-simple",
282
- "WizardLM/WizardLM-13B-V1.1",
283
- "uukuguy/speechless-orca-platypus-coig-lite-2k-0.6e-13b",
284
- "huggyllama/llama-30b",
285
- "Undi95/ReMM-L2-13B-PIPPA",
286
- "Undi95/ReMM-L2-13B",
287
- "gaodrew/gaodrew-gorgonzola-13b",
288
- "lmsys/vicuna-13b-v1.5",
289
- "yeontaek/Platypus2xOpenOrca-13B-LoRa",
290
- "Yhyu13/llama-30B-hf-openassitant",
291
- "huggingface/llama-30b",
292
- "lmsys/vicuna-13b-v1.5",
293
- "TFLai/Athena-Platypus2-13B-QLora-0.80-epoch",
294
- "TheBloke/dromedary-65b-lora-HF",
295
- "yeontaek/llama-2-13b-Beluga-QLoRA",
296
- "The-Face-Of-Goonery/Huginn-13b-V4",
297
- "The-Face-Of-Goonery/Huginn-13b-v4.5",
298
- "The-Face-Of-Goonery/Huginn-v3-13b",
299
- "tiiuae/falcon-40b",
300
- "WhoTookMyAmogusNickname/NewHope_HF_not_official",
301
- "gaodrew/OpenOrca-Platypus2-13B-thera-1250",
302
- "SLAM-group/NewHope",
303
- "garage-bAInd/Platypus2-13B",
304
- "migtissera/Synthia-13B",
305
- "elinas/chronos-13b-v2",
306
- "mosaicml/mpt-30b-chat",
307
- "CHIH-HUNG/llama-2-13b-OpenOrca_5w",
308
- "uukuguy/speechless-hermes-coig-lite-13b",
309
- "TheBloke/tulu-30B-fp16",
310
- "uukuguy/speechless-hermes-coig-lite-13b",
311
- "xDAN-AI/xDAN_13b_l2_lora",
312
- "lmsys/vicuna-13b-v1.5-16k",
313
- "openchat/openchat_v3.1",
314
- "CHIH-HUNG/llama-2-13b-dolphin_5w",
315
- "Aspik101/vicuna-13b-v1.5-PL-lora_unload",
316
- "Undi95/MLewd-L2-13B",
317
- "ehartford/minotaur-llama2-13b-qlora",
318
- "kajdun/iubaris-13b-v3",
319
- "TFLai/Limarp-Platypus2-13B-QLoRA-0.80-epoch",
320
- "openchat/openchat_v3.1",
321
- "uukuguy/speechless-orca-platypus-coig-lite-4k-0.6e-13b",
322
- "ziqingyang/chinese-alpaca-2-13b",
323
- "TFLai/Airboros2.1-Platypus2-13B-QLora-0.80-epoch",
324
- "yeontaek/llama-2-13b-Guanaco-QLoRA",
325
- "lmsys/vicuna-13b-v1.5-16k",
326
- "ehartford/based-30b",
327
- "kingbri/airolima-chronos-grad-l2-13B",
328
- "openchat/openchat_v3.2",
329
- "uukuguy/speechless-orca-platypus-coig-lite-4k-0.5e-13b",
330
- "yeontaek/Platypus2-13B-LoRa",
331
- "kingbri/chronolima-airo-grad-l2-13B",
332
- "openchat/openchat_v3.2",
333
- "TFLai/PuddleJumper-Platypus2-13B-QLoRA-0.80-epoch",
334
- "shareAI/llama2-13b-Chinese-chat",
335
- "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
336
- "Aspik101/Redmond-Puffin-13B-instruct-PL-lora_unload",
337
- "yeontaek/llama-2-13B-ensemble-v6",
338
- "WizardLM/WizardLM-13B-V1.2",
339
- "TheBloke/WizardLM-13B-V1.1-GPTQ",
340
- "bhenrym14/airophin-13b-pntk-16k-fp16",
341
- "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
342
- "Mikael110/llama-2-13b-guanaco-fp16",
343
- "yeontaek/airoboros-2.1-llama-2-13B-QLoRa",
344
- "CalderaAI/13B-Legerdemain-L2",
345
- "grimpep/llama2-22b-wizard_vicuna",
346
- "grimpep/llama2-22B-GPLATTY",
347
- "bhenrym14/airophin-13b-pntk-16k-fp16",
348
- "yeontaek/llama-2-13b-QLoRA",
349
- "OpenAssistant/llama2-13b-orca-8k-3319",
350
- "TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16",
351
- "duliadotio/dulia-13b-8k-alpha",
352
- "Undi95/LewdEngine",
353
- "OpenBuddy/openbuddy-llama2-13b-v8.1-fp16",
354
- "CHIH-HUNG/llama-2-13b-open_orca_20w",
355
- "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
356
- "FlagAlpha/Llama2-Chinese-13b-Chat",
357
- "LLMs/WizardLM-13B-V1.0",
358
- "chansung/gpt4-alpaca-lora-13b-decapoda-1024",
359
- "TheBloke/wizardLM-13B-1.0-fp16",
360
- "digitous/13B-Chimera",
361
- "yeontaek/Platypus2xOpenOrcaxGuanaco-13B-LoRa",
362
- "jondurbin/airoboros-l2-13b-2.1",
363
- "Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b",
364
- "TheBloke/UltraLM-13B-fp16",
365
- "openaccess-ai-collective/minotaur-13b-fixed",
366
- "NousResearch/Redmond-Puffin-13B",
367
- "KoboldAI/LLaMA2-13B-Holomax",
368
- "Lajonbot/WizardLM-13B-V1.2-PL-lora_unload",
369
- "yeontaek/Platypus2-13B-LoRa-v2",
370
- "TheBloke/airoboros-13B-HF",
371
- "jondurbin/airoboros-13b",
372
- "jjaaaww/posi_13b",
373
- "CoolWP/llama-2-13b-guanaco-fp16",
374
- "yeontaek/Platypus2-13B-QLoRa",
375
- "h2oai/h2ogpt-research-oig-oasst1-512-30b",
376
- "dfurman/llama-2-13b-guanaco-peft",
377
- "NousResearch/Redmond-Puffin-13B",
378
- "pe-nlp/llama-2-13b-platypus-vicuna-wizard",
379
- "CHIH-HUNG/llama-2-13b-dolphin_20w",
380
- "NousResearch/Nous-Hermes-13b",
381
- "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4",
382
- "ehartford/Wizard-Vicuna-13B-Uncensored",
383
- "TheBloke/Wizard-Vicuna-13B-Uncensored-HF",
384
- "openchat/openchat_v3.2_super",
385
- "bhenrym14/airophin-v2-13b-PI-8k-fp16",
386
- "openaccess-ai-collective/manticore-13b",
387
- "The-Face-Of-Goonery/Huginn-22b-Prototype",
388
- "jphme/Llama-2-13b-chat-german",
389
- "grimpep/llama2-28B-Airo03",
390
- "TheBloke/Kimiko-v2-13B-fp16",
391
- "FPHam/Free_Sydney_13b_HF",
392
- "lmsys/vicuna-13b-v1.3",
393
- "FelixChao/llama2-13b-math1.1",
394
- "CalderaAI/13B-BlueMethod",
395
- "meta-llama/Llama-2-13b-chat-hf",
396
- "deepse/CodeUp-Llama-2-13b-chat-hf",
397
- "WizardLM/WizardMath-13B-V1.0",
398
- "WizardLM/WizardMath-13B-V1.0",
399
- "HyperbeeAI/Tulpar-7b-v0",
400
- "xxyyy123/test_qkvo_adptor",
401
- "xxyyy123/mc_data_30k_from_platpus_orca_7b_10k_v1_lora_qkvo_rank14_v2",
402
- "openchat/openchat_v2_w",
403
- "FelixChao/llama2-13b-math1.1",
404
- "psmathur/orca_mini_v3_7b",
405
- "TehVenom/Metharme-13b-Merged",
406
- "xxyyy123/10k_v1_lora_qkvo_rank14_v3",
407
- "OpenAssistant/llama2-13b-orca-v2-8k-3166",
408
- "openaccess-ai-collective/wizard-mega-13b",
409
- "jondurbin/airoboros-13b-gpt4-1.4",
410
- "jondurbin/airoboros-13b-gpt4-1.4-fp16",
411
- "Monero/Manticore-13b-Chat-Pyg-Guanaco",
412
- "FelixChao/llama2-13b-math1.2",
413
- "chargoddard/platypus-2-22b-relora",
414
- "FelixChao/llama2-13b-math1.2",
415
- "Gryphe/MythoBoros-13b",
416
- "CalderaAI/13B-Ouroboros",
417
- "OpenAssistant/llama2-13b-orca-v2-8k-3166",
418
- "heegyu/LIMA2-13b-hf",
419
- "digitous/13B-HyperMantis",
420
- "Gryphe/MythoLogic-13b",
421
- "TheBloke/Airoboros-L2-13B-2.1-GPTQ",
422
- "chargoddard/platypus2-22b-relora",
423
- "openchat/openchat_v2",
424
- "yeontaek/Platypus2-13B-IA3",
425
- "stabilityai/StableBeluga-7B",
426
- "circulus/Llama-2-7b-orca-v1",
427
- "budecosystem/genz-13b-v2",
428
- "TheBloke/gpt4-x-vicuna-13B-HF",
429
- "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons",
430
- "zarakiquemparte/zarafusionex-1.1-l2-7b",
431
- "Lajonbot/tableBeluga-7B-instruct-pl-lora_unload",
432
- "jondurbin/airoboros-13b-gpt4",
433
- "gaodrew/gaodrew-gorgonzola-13b",
434
- "jondurbin/airoboros-13b-gpt4-1.1",
435
- "TheBloke/gpt4-alpaca-lora-13B-HF",
436
- "zarakiquemparte/zarablendex-vq-l2-7b",
437
- "openaccess-ai-collective/manticore-13b-chat-pyg",
438
- "Lajonbot/Llama-2-13b-hf-instruct-pl-lora_unload",
439
- "NobodyExistsOnTheInternet/PuffedLIMA13bQLORA",
440
- "xxyyy123/10k_v1_lora_qkvo_rank28_v2",
441
- "jondurbin/airoboros-l2-13b-gpt4-1.4.1",
442
- "dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16",
443
- "NobodyExistsOnTheInternet/PuffedConvo13bLoraE4",
444
- "yihan6324/llama2-7b-instructmining-40k-sharegpt",
445
- "CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w",
446
- "Aeala/GPT4-x-Alpasta-13b",
447
- "psmathur/orca_mini_v2_13b",
448
- "YeungNLP/firefly-llama-13b",
449
- "psmathur/orca_mini_v2_13b",
450
- "zarakiquemparte/zarafusionix-l2-7b",
451
- "yihan6324/llama2-7b-instructmining-60k-sharegpt",
452
- "yihan6324/llama-2-7b-instructmining-60k-sharegpt",
453
- "layoric/llama-2-13b-code-alpaca",
454
- "bofenghuang/vigogne-13b-instruct",
455
- "Lajonbot/vicuna-13b-v1.3-PL-lora_unload",
456
- "lvkaokao/llama2-7b-hf-chat-lora-v3",
457
- "ehartford/dolphin-llama-13b",
458
- "YeungNLP/firefly-llama-13b-v1.2",
459
- "TheBloke/Kimiko-13B-fp16",
460
- "kevinpro/Vicuna-13B-CoT",
461
- "eachadea/vicuna-13b-1.1",
462
- "pillowtalks-ai/delta13b",
463
- "TheBloke/vicuna-13B-1.1-HF",
464
- "TheBloke/Vicuna-13B-CoT-fp16",
465
- "lmsys/vicuna-13b-delta-v1.1",
466
- "lmsys/vicuna-13b-v1.1",
467
- "xxyyy123/20k_v1_lora_qkvo_rank14_v2",
468
- "TheBloke/guanaco-13B-HF",
469
- "TheBloke/vicuna-13b-v1.3.0-GPTQ",
470
- "edor/Stable-Platypus2-mini-7B",
471
- "totally-not-an-llm/EverythingLM-13b-V2-16k",
472
- "zarakiquemparte/zaraxe-l2-7b",
473
- "beaugogh/Llama2-7b-openorca-mc-v2",
474
- "TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16",
475
- "quantumaikr/QuantumLM",
476
- "jondurbin/airoboros-13b-gpt4-1.2",
477
- "TheBloke/robin-13B-v2-fp16",
478
- "TFLai/llama-2-13b-4bit-alpaca-gpt4",
479
- "yihan6324/llama2-7b-instructmining-orca-40k",
480
- "dvruette/oasst-llama-13b-2-epochs",
481
- "Open-Orca/LlongOrca-7B-16k",
482
- "Aspik101/Nous-Hermes-13b-pl-lora_unload",
483
- "ehartford/Samantha-1.11-CodeLlama-34b",
484
- "nkpz/llama2-22b-chat-wizard-uncensored",
485
- "bofenghuang/vigogne-13b-chat",
486
- "beaugogh/Llama2-7b-openorca-mc-v1",
487
- "OptimalScale/robin-13b-v2-delta",
488
- "pe-nlp/llama-2-13b-vicuna-wizard",
489
- "chargoddard/llama2-22b",
490
- "gywy/llama2-13b-chinese-v1",
491
- "frank098/Wizard-Vicuna-13B-juniper",
492
- "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
493
- "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-gate_up_down_proj",
494
- "eachadea/vicuna-13b",
495
- "yihan6324/llama2-7b-instructmining-orca-90k",
496
- "chargoddard/llama2-22b-blocktriangular",
497
- "luffycodes/mcq-vicuna-13b-v1.5",
498
- "Yhyu13/chimera-inst-chat-13b-hf",
499
- "luffycodes/mcq-vicuna-13b-v1.5",
500
- "chargoddard/ypotryll-22b-epoch2-qlora",
501
- "totally-not-an-llm/EverythingLM-13b-16k",
502
- "luffycodes/mcq-hal-vicuna-13b-v1.5",
503
- "openaccess-ai-collective/minotaur-13b",
504
- "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
505
- "chargoddard/llama2-22b-blocktriangular",
506
- "TFLai/Platypus2-13B-QLoRA-0.80-epoch",
507
- "meta-llama/Llama-2-13b-hf",
508
- "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-gate_up_down_proj",
509
- "luffycodes/mcq-hal-vicuna-13b-v1.5",
510
- "TheBloke/Llama-2-13B-fp16",
511
- "TaylorAI/Flash-Llama-13B",
512
- "shareAI/bimoGPT-llama2-13b",
513
- "wahaha1987/llama_13b_sharegpt94k_fastchat",
514
- "openchat/openchat_8192",
515
- "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj",
516
- "dvruette/llama-13b-pretrained-sft-do2",
517
- "CHIH-HUNG/llama-2-13b-alpaca-test",
518
- "OpenBuddy/openbuddy-llama2-13b-v11.1-bf16",
519
- "CHIH-HUNG/llama-2-13b-FINETUNE2_TEST_2.2w",
520
- "project-baize/baize-v2-13b",
521
- "jondurbin/airoboros-l2-13b-gpt4-m2.0",
522
- "yeontaek/Platypus2xOpenOrca-13B-LoRa-v2",
523
- "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w",
524
- "xzuyn/Alpacino-SuperCOT-13B",
525
- "jondurbin/airoboros-l2-13b-gpt4-2.0",
526
- "aiplanet/effi-13b",
527
- "clibrain/Llama-2-13b-ft-instruct-es",
528
- "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w",
529
- "bofenghuang/vigogne-2-7b-instruct",
530
- "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-q_k_v_o_proj",
531
- "bofenghuang/vigogne-2-7b-chat",
532
- "aiplanet/effi-13b",
533
- "haonan-li/bactrian-x-llama-13b-merged",
534
- "beaugogh/Llama2-7b-sharegpt4",
535
- "HWERI/Llama2-7b-sharegpt4",
536
- "jondurbin/airoboros-13b-gpt4-1.3",
537
- "jondurbin/airoboros-c34b-2.1",
538
- "junelee/wizard-vicuna-13b",
539
- "TheBloke/wizard-vicuna-13B-HF",
540
- "Open-Orca/OpenOrca-Preview1-13B",
541
- "TheBloke/h2ogpt-oasst1-512-30B-HF",
542
- "TheBloke/Llama-2-13B-GPTQ",
543
- "camel-ai/CAMEL-13B-Combined-Data",
544
- "lmsys/vicuna-7b-v1.5",
545
- "lmsys/vicuna-7b-v1.5-16k",
546
- "lmsys/vicuna-7b-v1.5",
547
- "ausboss/llama-13b-supercot",
548
- "TheBloke/tulu-13B-fp16",
549
- "NousResearch/Nous-Hermes-llama-2-7b",
550
- "jlevin/guanaco-13b-llama-2",
551
- "lmsys/vicuna-7b-v1.5-16k",
552
- "dvruette/llama-13b-pretrained",
553
- "nkpz/llama2-22b-daydreamer-v3",
554
- "dvruette/llama-13b-pretrained-dropout",
555
- "jondurbin/airoboros-l2-13b-2.1",
556
- "LLMs/Stable-Vicuna-13B",
557
- "64bits/LexPodLM-13B",
558
- "lizhuang144/llama_mirror_13b_v1.0",
559
- "TheBloke/stable-vicuna-13B-HF",
560
- "zarakiquemparte/zaraxls-l2-7b",
561
- "TheBloke/Llama-2-13B-GPTQ",
562
- "Kiddyz/testlm-3",
563
- "migtissera/Synthia-7B",
564
- "zarakiquemparte/zarablend-l2-7b",
565
- "mosaicml/mpt-30b-instruct",
566
- "PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged",
567
- "vonjack/Qwen-LLaMAfied-HFTok-7B-Chat",
568
- "l3utterfly/llama2-7b-layla",
569
- "Lajonbot/vicuna-7b-v1.5-PL-lora_unload",
570
- "heegyu/LIMA-13b-hf",
571
- "frank098/WizardLM_13B_juniper",
572
- "ashercn97/manatee-7b",
573
- "chavinlo/gpt4-x-alpaca",
574
- "PocketDoc/Dans-PersonalityEngine-13b",
575
- "ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b",
576
- "digitous/Alpacino13b",
577
- "edor/Hermes-Platypus2-mini-7B",
578
- "lvkaokao/llama2-7b-hf-chat-lora-v2",
579
- "Kiddyz/testlm-1-1",
580
- "Kiddyz/testlm",
581
- "Kiddyz/testlm-1",
582
- "Kiddyz/testlm2",
583
- "radm/Philosophy-Platypus2-13b",
584
- "aiplanet/effi-13b",
585
- "Harshvir/Llama-2-7B-physics",
586
- "YeungNLP/firefly-ziya-13b",
587
- "LinkSoul/Chinese-Llama-2-7b",
588
- "PeanutJar/LLaMa-2-PeanutButter_v10-7B",
589
- "OpenBuddy/openbuddy-llama2-13b-v11-bf16",
590
- "StudentLLM/Alpagasus-2-13B-QLoRA-pipeline",
591
- "meta-llama/Llama-2-13b-hf",
592
- "WizardLM/WizardCoder-Python-34B-V1.0",
593
- "dvruette/llama-13b-pretrained-sft-epoch-1",
594
- "camel-ai/CAMEL-13B-Role-Playing-Data",
595
- "ziqingyang/chinese-llama-2-13b",
596
- "rombodawg/LosslessMegaCoder-llama2-7b-mini",
597
- "TheBloke/koala-13B-HF",
598
- "lmsys/vicuna-7b-delta-v1.1",
599
- "eachadea/vicuna-7b-1.1",
600
- "Ejafa/vicuna_7B_vanilla_1.1",
601
- "lvkaokao/llama2-7b-hf-chat-lora",
602
- "OpenBuddy/openbuddy-atom-13b-v9-bf16",
603
- "Norquinal/llama-2-7b-claude-chat-rp",
604
- "Danielbrdz/Barcenas-7b",
605
- "heegyu/WizardVicuna2-13b-hf",
606
- "meta-llama/Llama-2-7b-chat-hf",
607
- "PeanutJar/LLaMa-2-PeanutButter_v14-7B",
608
- "PeanutJar/LLaMa-2-PeanutButter_v4-7B",
609
- "davzoku/cria-llama2-7b-v1.3",
610
- "OpenBuddy/openbuddy-atom-13b-v9-bf16",
611
- "lvkaokao/llama2-7b-hf-instruction-lora",
612
- "Tap-M/Luna-AI-Llama2-Uncensored",
613
- "ehartford/Samantha-1.11-7b",
614
- "WizardLM/WizardCoder-Python-34B-V1.0",
615
- "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ",
616
- "Mikael110/llama-2-7b-guanaco-fp16",
617
- "garage-bAInd/Platypus2-7B",
618
- "PeanutJar/LLaMa-2-PeanutButter_v18_B-7B",
619
- "mosaicml/mpt-30b",
620
- "garage-bAInd/Platypus2-7B",
621
- "huggingface/llama-13b",
622
- "dvruette/oasst-llama-13b-1000-steps",
623
- "jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b",
624
- "huggyllama/llama-13b",
625
- "Voicelab/trurl-2-7b",
626
- "TFLai/llama-13b-4bit-alpaca",
627
- "gywy/llama2-13b-chinese-v2",
628
- "lmsys/longchat-13b-16k",
629
- "Aspik101/trurl-2-7b-pl-instruct_unload",
630
- "WizardLM/WizardMath-7B-V1.0",
631
- "Norquinal/llama-2-7b-claude-chat",
632
- "TheTravellingEngineer/llama2-7b-chat-hf-dpo",
633
- "HuggingFaceH4/starchat-beta",
634
- "joehuangx/spatial-vicuna-7b-v1.5-LoRA",
635
- "conceptofmind/LLongMA-2-13b-16k",
636
- "tianyil1/denas-llama2",
637
- "lmsys/vicuna-7b-v1.3",
638
- "conceptofmind/LLongMA-2-13b-16k",
639
- "openchat/opencoderplus",
640
- "ajibawa-2023/scarlett-7b",
641
- "dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged",
642
- "psyche/kollama2-7b-v2",
643
- "heegyu/LIMA2-7b-hf",
644
- "dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16",
645
- "abhishek/llama2guanacotest",
646
- "jondurbin/airoboros-l2-7b-2.1",
647
- "llama-anon/instruct-13b",
648
- "FelixChao/vicuna-7B-physics",
649
- "Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload",
650
- "shibing624/chinese-alpaca-plus-13b-hf",
651
- "davzoku/cria-llama2-7b-v1.3_peft",
652
- "quantumaikr/llama-2-7b-hf-guanaco-1k",
653
- "togethercomputer/Llama-2-7B-32K-Instruct",
654
- "sia-ai/llama-2-7b-1-percent-open-orca-1000-steps-v0",
655
- "TheTravellingEngineer/llama2-7b-hf-guanaco",
656
- "Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload",
657
- "jondurbin/airoboros-l2-7b-gpt4-1.4.1",
658
- "wahaha1987/llama_7b_sharegpt94k_fastchat",
659
- "FelixChao/vicuna-7B-chemical",
660
- "TinyPixel/llama2-7b-oa",
661
- "chaoyi-wu/MedLLaMA_13B",
662
- "edor/Platypus2-mini-7B",
663
- "RoversX/llama-2-7b-hf-small-shards-Samantha-V1-SFT",
664
- "venkycs/llama-v2-7b-32kC-Security",
665
- "psyche/kollama2-7b",
666
- "Fredithefish/Guanaco-7B-Uncensored",
667
- "TheTravellingEngineer/llama2-7b-chat-hf-guanaco",
668
- "ehartford/WizardLM-13B-Uncensored",
669
- "PocketDoc/Dans-CreepingSenseOfDoom",
670
- "wenge-research/yayi-7b-llama2",
671
- "georgesung/llama2_7b_chat_uncensored",
672
- "TinyPixel/llama2-7b-instruct",
673
- "quantumaikr/QuantumLM-7B",
674
- "xzuyn/MedicWizard-7B",
675
- "wenge-research/yayi-7b-llama2",
676
- "TinyPixel/lima-test",
677
- "elyza/ELYZA-japanese-Llama-2-7b-instruct",
678
- "lgaalves/llama-2-7b-hf_open-platypus",
679
- "ziqingyang/chinese-alpaca-2-7b",
680
- "TehVenom/Pygmalion-Vicuna-1.1-7b",
681
- "meta-llama/Llama-2-7b-hf",
682
- "bongchoi/test-llama2-7b",
683
- "TaylorAI/Flash-Llama-7B",
684
- "TheTravellingEngineer/llama2-7b-chat-hf-v2",
685
- "TheTravellingEngineer/llama2-7b-chat-hf-v4",
686
- "kashif/stack-llama-2",
687
- "PeanutJar/LLaMa-2-PeanutButter_v18_A-7B",
688
- "ToolBench/ToolLLaMA-7b-LoRA",
689
- "Monero/WizardLM-13b-OpenAssistant-Uncensored",
690
- "TheTravellingEngineer/llama2-7b-chat-hf-v2",
691
- "TheTravellingEngineer/llama2-7b-chat-hf-v4",
692
- "mrm8488/llama-2-coder-7b",
693
- "elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
694
- "clibrain/Llama-2-7b-ft-instruct-es",
695
- "medalpaca/medalpaca-7b",
696
- "TheBloke/tulu-7B-fp16",
697
- "OpenBuddy/openbuddy-openllama-13b-v7-fp16",
698
- "TaylorAI/FLAN-Llama-7B-2_Llama2-7B-Flash_868_full_model",
699
- "Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload",
700
- "jondurbin/airoboros-l2-7b-gpt4-2.0",
701
- "dhmeltzer/llama-7b-SFT_ds_eli5_1024_r_64_alpha_16_merged",
702
- "GOAT-AI/GOAT-7B-Community",
703
- "AtomEchoAI/AtomGPT_56k",
704
- "julianweng/Llama-2-7b-chat-orcah",
705
- "TehVenom/Pygmalion-13b-Merged",
706
- "jondurbin/airoboros-7b-gpt4-1.1",
707
- "dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged",
708
- "bofenghuang/vigogne-7b-chat",
709
- "lmsys/longchat-7b-v1.5-32k",
710
- "jondurbin/airoboros-l2-7b-gpt4-m2.0",
711
- "synapsoft/Llama-2-7b-chat-hf-flan2022-1.2M",
712
- "jondurbin/airoboros-7b-gpt4-1.4",
713
- "Charlie911/vicuna-7b-v1.5-lora-mctaco",
714
- "yihan6324/instructmining-platypus-15k",
715
- "meta-llama/Llama-2-7b-hf",
716
- "TheTravellingEngineer/llama2-7b-chat-hf-v3",
717
- "quantumaikr/KoreanLM-hf",
718
- "openthaigpt/openthaigpt-1.0.0-alpha-7b-chat-ckpt-hf",
719
- "TheBloke/Llama-2-7B-GPTQ",
720
- "TheBloke/Llama-2-7B-GPTQ",
721
- "LLMs/AlpacaGPT4-7B-elina",
722
- "ehartford/Wizard-Vicuna-7B-Uncensored",
723
- "TheBloke/Wizard-Vicuna-7B-Uncensored-HF",
724
- "TheTravellingEngineer/llama2-7b-chat-hf-v3",
725
- "golaxy/gowizardlm",
726
- "ehartford/dolphin-llama2-7b",
727
- "CHIH-HUNG/llama-2-7b-dolphin_10w-test",
728
- "mncai/chatdoctor",
729
- "psyche/kollama2-7b-v3",
730
- "jondurbin/airoboros-7b-gpt4",
731
- "jondurbin/airoboros-7b",
732
- "TheBloke/airoboros-7b-gpt4-fp16",
733
- "mosaicml/mpt-7b-8k-chat",
734
- "elyza/ELYZA-japanese-Llama-2-7b",
735
- "bofenghuang/vigogne-7b-instruct",
736
- "jxhong/CAlign-alpaca-7b",
737
- "golaxy/goims",
738
- "jondurbin/airoboros-7b-gpt4-1.2",
739
- "jphme/orca_mini_v2_ger_7b",
740
- "psmathur/orca_mini_v2_7b",
741
- "notstoic/PygmalionCoT-7b",
742
- "golaxy/gogpt2-13b",
743
- "golaxy/gogpt2-13b-chat",
744
- "togethercomputer/LLaMA-2-7B-32K",
745
- "TheBloke/wizardLM-7B-HF",
746
- "keyfan/vicuna-chinese-replication-v1.1",
747
- "golaxy/gogpt2-7b",
748
- "aiplanet/effi-7b",
749
- "arver/llama7b-qlora",
750
- "titan087/OpenLlama13B-Guanaco",
751
- "chavinlo/alpaca-native",
752
- "project-baize/baize-healthcare-lora-7B",
753
- "AlpinDale/pygmalion-instruct",
754
- "openlm-research/open_llama_13b",
755
- "jondurbin/airoboros-7b-gpt4-1.3",
756
- "elyza/ELYZA-japanese-Llama-2-7b-fast",
757
- "jondurbin/airoboros-gpt-3.5-turbo-100k-7b",
758
- "uukuguy/speechless-codellama-orca-13b",
759
- "bigcode/starcoderplus",
760
- "TheBloke/guanaco-7B-HF",
761
- "Neko-Institute-of-Science/metharme-7b",
762
- "TigerResearch/tigerbot-7b-base",
763
- "golaxy/gogpt-7b",
764
- "togethercomputer/LLaMA-2-7B-32K",
765
- "yhyhy3/open_llama_7b_v2_med_instruct",
766
- "ajibawa-2023/carl-7b",
767
- "stabilityai/stablelm-base-alpha-7b-v2",
768
- "conceptofmind/LLongMA-2-7b-16k",
769
- "TehVenom/Pygmalion_AlpacaLora-7b",
770
- "jondurbin/airoboros-7b-gpt4-1.4.1-qlora",
771
- "wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard",
772
- "ausboss/llama7b-wizardlm-unfiltered",
773
- "project-baize/baize-v2-7b",
774
- "LMFlow/Robin-v2",
775
- "HanningZhang/Robin-v2",
776
- "LMFlow/Robin-7b-v2",
777
- "OptimalScale/robin-7b-v2-delta",
778
- "uukuguy/speechless-codellama-platypus-13b",
779
- "jerryjalapeno/nart-100k-7b",
780
- "wenge-research/yayi-13b-llama2",
781
- "fireballoon/baichuan-vicuna-chinese-7b",
782
- "jlevin/guanaco-unchained-llama-2-7b",
783
- "csitfun/llama-7b-logicot",
784
- "DevaMalla/llama7b_alpaca_1gpu_bf16",
785
- "WeOpenML/PandaLM-Alpaca-7B-v1",
786
- "illuin/test-custom-llama",
787
- "yeontaek/WizardCoder-Python-13B-LoRa",
788
- "ashercn97/giraffe-7b",
789
- "mosaicml/mpt-7b-chat",
790
- "abhishek/autotrain-llama-alpaca-peft-52508123785",
791
- "Neko-Institute-of-Science/pygmalion-7b",
792
- "TFLai/llama-7b-4bit-alpaca",
793
- "huggingface/llama-7b",
794
- "TheBloke/Planner-7B-fp16",
795
- "shibing624/chinese-llama-plus-13b-hf",
796
- "AGI-inc/lora_moe_7b_baseline",
797
- "DevaMalla/llama-base-7b",
798
- "AGI-inc/lora_moe_7b",
799
- "togethercomputer/GPT-JT-6B-v0",
800
- "ehartford/WizardLM-7B-Uncensored",
801
- "shibing624/chinese-alpaca-plus-7b-hf",
802
- "beomi/llama-2-ko-7b",
803
- "mosaicml/mpt-7b-8k-instruct",
804
- "Enno-Ai/ennodata-7b",
805
- "mosaicml/mpt-7b-instruct",
806
- "facebook/opt-iml-max-30b",
807
- "WeOpenML/Alpaca-7B-v1",
808
- "TheBloke/Project-Baize-v2-7B-GPTQ",
809
- "codellama/CodeLlama-13b-Instruct-hf",
810
- "TheBloke/CodeLlama-13B-Instruct-fp16",
811
- "facebook/galactica-30b",
812
- "FreedomIntelligence/phoenix-inst-chat-7b",
813
- "openlm-research/open_llama_7b_v2",
814
- "GeorgiaTechResearchInstitute/galpaca-30b",
815
- "THUDM/chatglm2-6b",
816
- "togethercomputer/GPT-JT-6B-v1",
817
- "TheBloke/koala-7B-HF",
818
- "nathan0/mpt_delta_tuned_model_v3",
819
- "nathan0/mpt_delta_tuned_model_v2",
820
- "GeorgiaTechResearchInstitute/galpaca-30b",
821
- "JosephusCheung/Guanaco",
822
- "shareAI/CodeLLaMA-chat-13b-Chinese",
823
- "TigerResearch/tigerbot-7b-sft",
824
- "Writer/InstructPalmyra-20b",
825
- "OpenAssistant/codellama-13b-oasst-sft-v10",
826
- "bigscience/bloomz-7b1-mt",
827
- "nathan0/mpt_delta_tuned_model_v3",
828
- "VMware/open-llama-7b-open-instruct",
829
- "baichuan-inc/Baichuan-7B",
830
- "anas-awadalla/mpt-7b",
831
- "mosaicml/mpt-7b",
832
- "bigscience/bloomz-7b1",
833
- "ziqingyang/chinese-llama-2-7b",
834
- "OpenAssistant/codellama-13b-oasst-sft-v10",
835
- "wenge-research/yayi-7b",
836
- "tiiuae/falcon-7b",
837
- "togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1",
838
- "togethercomputer/RedPajama-INCITE-7B-Instruct",
839
- "TheBloke/landmark-attention-llama7b-fp16",
840
- "togethercomputer/GPT-JT-Moderation-6B",
841
- "h2oai/h2ogpt-gm-oasst1-en-1024-20b",
842
- "dvruette/gpt-neox-20b-full-precision",
843
- "TehVenom/Moderator-Chan_GPT-JT-6b",
844
- "dvruette/oasst-gpt-neox-20b-1000-steps",
845
- "AlekseyKorshuk/pygmalion-6b-vicuna-chatml",
846
- "facebook/opt-66b",
847
- "Salesforce/codegen-16B-nl",
848
- "Vmware/open-llama-7b-v2-open-instruct",
849
- "mosaicml/mpt-7b-storywriter",
850
- "acrastt/Marx-3B-V2",
851
- "openlm-research/open_llama_7b",
852
- "Fredithefish/ReasonixPajama-3B-HF",
853
- "togethercomputer/GPT-NeoXT-Chat-Base-20B",
854
- "psmathur/orca_mini_13b",
855
- "RWKV/rwkv-raven-14b",
856
- "h2oai/h2ogpt-oasst1-512-20b",
857
- "acrastt/Marx-3B",
858
- "klosax/open_llama_13b_600bt_preview",
859
- "synapsoft/Llama-2-7b-hf-flan2022-1.2M",
860
- "OpenAssistant/oasst-sft-1-pythia-12b",
861
- "golaxy/gogpt-7b-bloom",
862
- "Writer/palmyra-large",
863
- "psmathur/orca_mini_7b",
864
- "dvruette/oasst-pythia-12b-6000-steps",
865
- "NousResearch/CodeLlama-13b-hf",
866
- "codellama/CodeLlama-13b-hf",
867
- "h2oai/h2ogpt-gm-oasst1-multilang-1024-20b",
868
- "VMware/open-llama-0.7T-7B-open-instruct-v1.1",
869
- "dvruette/oasst-pythia-12b-flash-attn-5000-steps",
870
- "dvruette/oasst-gpt-neox-20b-3000-steps",
871
- "RobbeD/OpenLlama-Platypus-3B",
872
- "facebook/opt-30b",
873
- "acrastt/Puma-3B",
874
- "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
875
- "dvruette/oasst-pythia-12b-pretrained-sft",
876
- "digitous/GPT-R",
877
- "acrastt/Griffin-3B",
878
- "togethercomputer/RedPajama-INCITE-Base-7B-v0.1",
879
- "togethercomputer/RedPajama-INCITE-7B-Base",
880
- "CobraMamba/mamba-gpt-3b-v3",
881
- "Danielbrdz/CodeBarcenas-7b",
882
- "l3utterfly/open-llama-3b-v2-layla",
883
- "CobraMamba/mamba-gpt-3b-v2",
884
- "OpenAssistant/pythia-12b-sft-v8-7k-steps",
885
- "KoboldAI/GPT-NeoX-20B-Erebus",
886
- "RobbeD/Orca-Platypus-3B",
887
- "h2oai/h2ogpt-gm-oasst1-en-1024-12b",
888
- "OpenAssistant/pythia-12b-sft-v8-2.5k-steps",
889
- "AlekseyKorshuk/chatml-pyg-v1",
890
- "togethercomputer/RedPajama-INCITE-Chat-7B-v0.1",
891
- "togethercomputer/RedPajama-INCITE-7B-Chat",
892
- "digitous/Javelin-R",
893
- "dvruette/oasst-pythia-12b-reference",
894
- "EleutherAI/gpt-neox-20b",
895
- "KoboldAI/fairseq-dense-13B",
896
- "OpenAssistant/pythia-12b-sft-v8-rlhf-2k-steps",
897
- "codellama/CodeLlama-7b-Instruct-hf",
898
- "digitous/Javelin-GPTJ",
899
- "KoboldAI/GPT-NeoX-20B-Skein",
900
- "digitous/Javalion-R",
901
- "h2oai/h2ogpt-oasst1-512-12b",
902
- "acrastt/Bean-3B",
903
- "KoboldAI/GPT-J-6B-Skein",
904
- "nomic-ai/gpt4all-j",
905
- "databricks/dolly-v2-12b",
906
- "TehVenom/Dolly_Shygmalion-6b-Dev_V8P2",
907
- "databricks/dolly-v2-7b",
908
- "Aspik101/WizardVicuna-Uncensored-3B-instruct-PL-lora_unload",
909
- "digitous/Adventien-GPTJ",
910
- "openlm-research/open_llama_3b_v2",
911
- "RWKV/rwkv-4-14b-pile",
912
- "Lazycuber/Janemalion-6B",
913
- "OpenAssistant/pythia-12b-pre-v8-12.5k-steps",
914
- "digitous/Janin-R",
915
- "kfkas/Llama-2-ko-7b-Chat",
916
- "heegyu/WizardVicuna-Uncensored-3B-0719",
917
- "h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt",
918
- "TaylorAI/Flash-Llama-3B",
919
- "kfkas/Llama-2-ko-7b-Chat",
920
- "digitous/Skegma-GPTJ",
921
- "digitous/Javalion-GPTJ",
922
- "Pirr/pythia-13b-deduped-green_devil",
923
- "TehVenom/PPO_Shygmalion-V8p4_Dev-6b",
924
- "dvruette/oasst-pythia-6.9b-4000-steps",
925
- "heegyu/WizardVicuna-3B-0719",
926
- "psmathur/orca_mini_3b",
927
- "OpenAssistant/galactica-6.7b-finetuned",
928
- "frank098/orca_mini_3b_juniper",
929
- "PygmalionAI/pygmalion-6b",
930
- "TehVenom/PPO_Pygway-V8p4_Dev-6b",
931
- "TFLai/gpt-neox-20b-4bit-alpaca",
932
- "Corianas/gpt-j-6B-Dolly",
933
- "TehVenom/Dolly_Shygmalion-6b",
934
- "digitous/Janin-GPTJ",
935
- "TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4",
936
- "EleutherAI/gpt-j-6b",
937
- "KoboldAI/GPT-J-6B-Shinen",
938
- "TehVenom/Dolly_Malion-6b",
939
- "TehVenom/ChanMalion",
940
- "Salesforce/codegen-6B-nl",
941
- "Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4",
942
- "KoboldAI/GPT-J-6B-Janeway",
943
- "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
944
- "togethercomputer/Pythia-Chat-Base-7B",
945
- "heegyu/RedTulu-Uncensored-3B-0719",
946
- "KoboldAI/PPO_Pygway-6b-Mix",
947
- "KoboldAI/OPT-13B-Erebus",
948
- "KoboldAI/fairseq-dense-6.7B",
949
- "EleutherAI/pythia-12b-deduped",
950
- "pszemraj/pythia-6.9b-HC3",
951
- "Fredithefish/Guanaco-3B-Uncensored-v2",
952
- "facebook/opt-13b",
953
- "TehVenom/GPT-J-Pyg_PPO-6B",
954
- "EleutherAI/pythia-6.9b-deduped",
955
- "Devio/test-1400",
956
- "Fredithefish/Guanaco-3B-Uncensored",
957
- "codellama/CodeLlama-7b-hf",
958
- "acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1",
959
- "Fredithefish/ScarletPajama-3B-HF",
960
- "KoboldAI/OPT-13B-Nerybus-Mix",
961
- "YeungNLP/firefly-bloom-7b1",
962
- "DanielSc4/RedPajama-INCITE-Chat-3B-v1-RL-LoRA-8bit-test1",
963
- "klosax/open_llama_7b_400bt_preview",
964
- "KoboldAI/OPT-13B-Nerys-v2",
965
- "TehVenom/PPO_Shygmalion-6b",
966
- "amazon/LightGPT",
967
- "KnutJaegersberg/black_goo_recipe_c",
968
- "NousResearch/CodeLlama-7b-hf",
969
- "togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
970
- "heegyu/WizardVicuna-open-llama-3b-v2",
971
- "bigscience/bloom-7b1",
972
- "Devio/test-22B",
973
- "RWKV/rwkv-raven-7b",
974
- "hakurei/instruct-12b",
975
- "CobraMamba/mamba-gpt-3b",
976
- "KnutJaegersberg/black_goo_recipe_a",
977
- "acrastt/OmegLLaMA-3B",
978
- "codellama/CodeLlama-7b-Instruct-hf",
979
- "h2oai/h2ogpt-oig-oasst1-512-6_9b",
980
- "KoboldAI/OPT-6.7B-Erebus",
981
- "facebook/opt-6.7b",
982
- "KnutJaegersberg/black_goo_recipe_d",
983
- "KnutJaegersberg/LLongMA-3b-LIMA",
984
- "KnutJaegersberg/black_goo_recipe_b",
985
- "KoboldAI/OPT-6.7B-Nerybus-Mix",
986
- "health360/Healix-3B",
987
- "EleutherAI/pythia-12b",
988
- "Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K",
989
- "GeorgiaTechResearchInstitute/galactica-6.7b-evol-instruct-70k",
990
- "h2oai/h2ogpt-oig-oasst1-256-6_9b",
991
- "ikala/bloom-zh-3b-chat",
992
- "Taekyoon/llama2-ko-7b-test",
993
- "anhnv125/pygmalion-6b-roleplay",
994
- "TehVenom/DiffMerge_Pygmalion_Main-onto-V8P4",
995
- "KoboldAI/OPT-6B-nerys-v2",
996
- "Lazycuber/pyg-instruct-wizardlm",
997
- "Devio/testC",
998
- "KoboldAI/OPT-30B-Erebus",
999
- "Fredithefish/CrimsonPajama",
1000
- "togethercomputer/RedPajama-INCITE-Base-3B-v1",
1001
- "bigscience/bloomz-3b",
1002
- "conceptofmind/Open-LLongMA-3b",
1003
- "RWKV/rwkv-4-7b-pile",
1004
- "openlm-research/open_llama_3b",
1005
- "ewof/koishi-instruct-3b",
1006
- "DanielSc4/RedPajama-INCITE-Chat-3B-v1-FT-LoRA-8bit-test1",
1007
- "cerebras/Cerebras-GPT-13B",
1008
- "EleutherAI/pythia-6.7b",
1009
- "aisquared/chopt-2_7b",
1010
- "Azure99/blossom-v1-3b",
1011
- "PSanni/Deer-3b",
1012
- "bertin-project/bertin-gpt-j-6B-alpaca",
1013
- "OpenBuddy/openbuddy-openllama-3b-v10-bf16",
1014
- "KoboldAI/fairseq-dense-2.7B",
1015
- "ehartford/CodeLlama-34b-Instruct-hf",
1016
- "codellama/CodeLlama-34b-Instruct-hf",
1017
- "TheBloke/CodeLlama-34B-Instruct-fp16",
1018
- "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
1019
- "openlm-research/open_llama_7b_700bt_preview",
1020
- "NbAiLab/nb-gpt-j-6B-alpaca",
1021
- "KoboldAI/OPT-2.7B-Erebus",
1022
- "Writer/camel-5b-hf",
1023
- "EleutherAI/pythia-2.7b",
1024
- "facebook/xglm-7.5B",
1025
- "EleutherAI/pythia-2.8b-deduped",
1026
- "klosax/open_llama_3b_350bt_preview",
1027
- "klosax/openllama-3b-350bt",
1028
- "KoboldAI/OPT-2.7B-Nerybus-Mix",
1029
- "KoboldAI/GPT-J-6B-Adventure",
1030
- "cerebras/Cerebras-GPT-6.7B",
1031
- "TFLai/pythia-2.8b-4bit-alpaca",
1032
- "facebook/opt-2.7b",
1033
- "KoboldAI/OPT-2.7B-Nerys-v2",
1034
- "bigscience/bloom-3b",
1035
- "Devio/test100",
1036
- "RWKV/rwkv-raven-3b",
1037
- "Azure99/blossom-v2-3b",
1038
- "codellama/CodeLlama-34b-Python-hf",
1039
- "bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16",
1040
- "EleutherAI/gpt-neo-2.7B",
1041
- "danielhanchen/open_llama_3b_600bt_preview",
1042
- "HuggingFaceH4/starchat-alpha",
1043
- "pythainlp/wangchanglm-7.5B-sft-en-sharded",
1044
- "beaugogh/pythia-1.4b-deduped-sharegpt",
1045
- "HWERI/pythia-1.4b-deduped-sharegpt",
1046
- "OpenAssistant/stablelm-7b-sft-v7-epoch-3",
1047
- "codellama/CodeLlama-7b-Python-hf",
1048
- "aisquared/chopt-1_3b",
1049
- "PygmalionAI/metharme-1.3b",
1050
- "Linly-AI/Chinese-LLaMA-2-13B-hf",
1051
- "chargoddard/llama-2-34b-uncode",
1052
- "RWKV/rwkv-4-3b-pile",
1053
- "pythainlp/wangchanglm-7.5B-sft-enth",
1054
- "MBZUAI/LaMini-GPT-1.5B",
1055
- "Writer/palmyra-base",
1056
- "KoboldAI/fairseq-dense-1.3B",
1057
- "EleutherAI/pythia-1.4b-deduped",
1058
- "MBZUAI/lamini-neo-1.3b",
1059
- "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt",
1060
- "sartmis1/starcoder-finetune-openapi",
1061
- "MayaPH/opt-flan-iml-6.7b",
1062
- "facebook/xglm-4.5B",
1063
- "WizardLM/WizardCoder-15B-V1.0",
1064
- "facebook/opt-iml-max-1.3b",
1065
- "stabilityai/stablelm-tuned-alpha-7b",
1066
- "aisquared/dlite-v2-1_5b",
1067
- "stabilityai/stablelm-base-alpha-7b",
1068
- "sartmis1/starcoder-finetune-selfinstruct",
1069
- "lizhuang144/starcoder_mirror",
1070
- "bigcode/starcoder",
1071
- "TheBloke/CodeLlama-34B-Python-fp16",
1072
- "open-llm-leaderboard/bloomz-1b7-4bit-alpaca-auto-eval-adapter-applied",
1073
- "ehartford/CodeLlama-34b-Python-hf",
1074
- "codellama/CodeLlama-7b-Python-hf",
1075
- "GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct",
1076
- "LoupGarou/WizardCoder-Guanaco-15B-V1.0",
1077
- "golaxy/gogpt-3b-bloom",
1078
- "EleutherAI/pythia-1.3b",
1079
- "codellama/CodeLlama-13b-Python-hf",
1080
- "hakurei/lotus-12B",
1081
- "NYTK/PULI-GPTrio",
1082
- "facebook/opt-1.3b",
1083
- "TheBloke/CodeLlama-13B-Python-fp16",
1084
- "codellama/CodeLlama-13b-Python-hf",
1085
- "RWKV/rwkv-raven-1b5",
1086
- "PygmalionAI/pygmalion-2.7b",
1087
- "bigscience/bloom-1b7",
1088
- "gpt2-xl",
1089
- "LoupGarou/WizardCoder-Guanaco-15B-V1.1",
1090
- "RWKV/rwkv-4-1b5-pile",
1091
- "codellama/CodeLlama-34b-hf",
1092
- "NousResearch/CodeLlama-34b-hf",
1093
- "rinna/bilingual-gpt-neox-4b-8k",
1094
- "lxe/Cerebras-GPT-2.7B-Alpaca-SP",
1095
- "cerebras/Cerebras-GPT-2.7B",
1096
- "jzjiao/opt-1.3b-rlhf",
1097
- "EleutherAI/gpt-neo-1.3B",
1098
- "aisquared/dlite-v1-1_5b",
1099
- "Corianas/Quokka_2.7b",
1100
- "MrNJK/gpt2-xl-sft",
1101
- "facebook/galactica-1.3b",
1102
- "aisquared/dlite-v2-774m",
1103
- "EleutherAI/pythia-1b-deduped",
1104
- "Kunhao/pile-7b-250b-tokens",
1105
- "w601sxs/b1ade-1b",
1106
- "rinna/bilingual-gpt-neox-4b",
1107
- "shaohang/SparseOPT-1.3B",
1108
- "shaohang/Sparse0.5_OPT-1.3",
1109
- "EleutherAI/polyglot-ko-12.8b",
1110
- "Salesforce/codegen-6B-multi",
1111
- "bigscience/bloom-1b1",
1112
- "TFLai/gpt-neo-1.3B-4bit-alpaca",
1113
- "FabbriSimo01/Bloom_1b_Quantized",
1114
- "MBZUAI/LaMini-GPT-774M",
1115
- "Locutusque/gpt2-large-conversational",
1116
- "Devio/test-3b",
1117
- "stabilityai/stablelm-tuned-alpha-3b",
1118
- "PygmalionAI/pygmalion-1.3b",
1119
- "KoboldAI/fairseq-dense-355M",
1120
- "Rachneet/gpt2-xl-alpaca",
1121
- "gpt2-large",
1122
- "Mikivis/gpt2-large-lora-sft",
1123
- "stabilityai/stablelm-base-alpha-3b",
1124
- "gpt2-medium",
1125
- "Kunhao/pile-7b",
1126
- "aisquared/dlite-v1-774m",
1127
- "aisquared/dlite-v2-355m",
1128
- "YeungNLP/firefly-bloom-2b6-v2",
1129
- "KnutJaegersberg/gpt-2-xl-EvolInstruct",
1130
- "KnutJaegersberg/galactica-orca-wizardlm-1.3b",
1131
- "cerebras/Cerebras-GPT-1.3B",
1132
- "FabbriSimo01/Cerebras_1.3b_Quantized",
1133
- "facebook/xglm-1.7B",
1134
- "EleutherAI/pythia-410m-deduped",
1135
- "TheBloke/GPlatty-30B-SuperHOT-8K-fp16",
1136
- "DataLinguistic/DataLinguistic-34B-V1.0",
1137
- "Corianas/Quokka_1.3b",
1138
- "TheTravellingEngineer/bloom-560m-RLHF-v2",
1139
- "Corianas/1.3b",
1140
- "RWKV/rwkv-4-430m-pile",
1141
- "porkorbeef/Llama-2-13b-sf",
1142
- "xhyi/PT_GPTNEO350_ATG",
1143
- "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ",
1144
- "bigscience/bloomz-560m",
1145
- "TheBloke/medalpaca-13B-GPTQ-4bit",
1146
- "TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16",
1147
- "aisquared/dlite-v1-355m",
1148
- "uukuguy/speechless-codellama-orca-airoboros-13b-0.10e",
1149
- "yhyhy3/med-orca-instruct-33b",
1150
- "TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16",
1151
- "TheTravellingEngineer/bloom-1b1-RLHF",
1152
- "MBZUAI/lamini-cerebras-1.3b",
1153
- "IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1",
1154
- "TheBloke/WizardLM-7B-uncensored-GPTQ",
1155
- "TheBloke/EverythingLM-13B-16K-GPTQ",
1156
- "quantumaikr/open_llama_7b_hf",
1157
- "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ",
1158
- "TheBloke/WizardLM-30B-Uncensored-GPTQ",
1159
- "IDEA-CCNL/Ziya-LLaMA-13B-v1",
1160
- "Phind/Phind-CodeLlama-34B-v1",
1161
- "robowaifudev/megatron-gpt2-345m",
1162
- "MayaPH/GodziLLa-30B-instruct",
1163
- "TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16",
1164
- "uukuguy/speechless-codellama-orca-platypus-13b-0.10e",
1165
- "doas/test2",
1166
- "BreadAi/PM_modelV2",
1167
- "bigcode/santacoder",
1168
- "TheBloke/wizard-vicuna-13B-GPTQ",
1169
- "porkorbeef/Llama-2-13b",
1170
- "TehVenom/DiffMerge-DollyGPT-Pygmalion",
1171
- "PygmalionAI/pygmalion-350m",
1172
- "TheBloke/orca_mini_v3_7B-GPTQ",
1173
- "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ",
1174
- "TheBloke/WizardLM-30B-GPTQ",
1175
- "bigscience/bloom-560m",
1176
- "TFLai/gpt2-turkish-uncased",
1177
- "TheBloke/guanaco-33B-GPTQ",
1178
- "TheBloke/openchat_v2_openorca_preview-GPTQ",
1179
- "porkorbeef/Llama-2-13b-public",
1180
- "TheBloke/LongChat-13B-GPTQ",
1181
- "yhyhy3/med-orca-instruct-33b",
1182
- "TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16",
1183
- "TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16",
1184
- "MayaPH/FinOPT-Franklin",
1185
- "TheBloke/WizardLM-33B-V1.0-Uncensored-GPTQ",
1186
- "TheBloke/Project-Baize-v2-13B-GPTQ",
1187
- "malhajar/Platypus2-70B-instruct-4bit-gptq",
1188
- "KoboldAI/OPT-350M-Erebus",
1189
- "rishiraj/bloom-560m-guanaco",
1190
- "Panchovix/WizardLM-33B-V1.0-Uncensored-SuperHOT-8k",
1191
- "doas/test5",
1192
- "vicgalle/alpaca-7b",
1193
- "beomi/KoAlpaca-Polyglot-5.8B",
1194
- "Phind/Phind-CodeLlama-34B-Python-v1",
1195
- "timdettmers/guanaco-65b-merged",
1196
- "TheBloke/wizard-mega-13B-GPTQ",
1197
- "MayaPH/GodziLLa-30B-plus",
1198
- "TheBloke/Platypus-30B-SuperHOT-8K-fp16",
1199
- "facebook/opt-350m",
1200
- "KoboldAI/OPT-350M-Nerys-v2",
1201
- "TheBloke/robin-33B-v2-GPTQ",
1202
- "jaspercatapang/Echidna-30B",
1203
- "TheBloke/llama-30b-supercot-SuperHOT-8K-fp16",
1204
- "marcchew/test1",
1205
- "Harshvir/LaMini-Neo-1.3B-Mental-Health_lora",
1206
- "golaxy/gogpt-560m",
1207
- "TheBloke/orca_mini_13B-GPTQ",
1208
- "Panchovix/airoboros-33b-gpt4-1.2-SuperHOT-8k",
1209
- "Aspik101/tulu-7b-instruct-pl-lora_unload",
1210
- "Phind/Phind-CodeLlama-34B-v2",
1211
- "BreadAi/MusePy-1-2",
1212
- "cerebras/Cerebras-GPT-590M",
1213
- "microsoft/CodeGPT-small-py",
1214
- "victor123/WizardLM-13B-1.0",
1215
- "OptimalScale/robin-65b-v2-delta",
1216
- "voidful/changpt-bart",
1217
- "FabbriSimo01/GPT_Large_Quantized",
1218
- "MayaPH/FinOPT-Lincoln",
1219
- "KoboldAI/fairseq-dense-125M",
1220
- "SebastianSchramm/Cerebras-GPT-111M-instruction",
1221
- "TheTravellingEngineer/bloom-560m-RLHF",
1222
- "breadlicker45/dough-instruct-base-001",
1223
- "WizardLM/WizardLM-30B-V1.0",
1224
- "WizardLM/WizardLM-30B-V1.0",
1225
- "WizardLM/WizardLM-30B-V1.0",
1226
- "TaylorAI/Flash-Llama-30M-20001",
1227
- "porkorbeef/Llama-2-13b-12_153950",
1228
- "huggingtweets/bladeecity-jerma985",
1229
- "KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct",
1230
- "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
1231
- "microsoft/DialoGPT-small",
1232
- "Corianas/590m",
1233
- "facebook/xglm-564M",
1234
- "EleutherAI/gpt-neo-125m",
1235
- "EleutherAI/pythia-160m-deduped",
1236
- "klosax/pythia-160m-deduped-step92k-193bt",
1237
- "MBZUAI/lamini-neo-125m",
1238
- "bigcode/tiny_starcoder_py",
1239
- "concedo/OPT-19M-ChatSalad",
1240
- "anton-l/gpt-j-tiny-random",
1241
- "grantprice/Cerebras-GPT-590M-finetuned-DND",
1242
- "deepnight-research/zsc-text",
1243
- "WangZeJun/bloom-820m-chat",
1244
- "cerebras/Cerebras-GPT-256M",
1245
- "ai-forever/rugpt3large_based_on_gpt2",
1246
- "alibidaran/medical_transcription_generator",
1247
- "Deci/DeciCoder-1b",
1248
- "microsoft/DialoGPT-medium",
1249
- "ogimgio/gpt-neo-125m-neurallinguisticpioneers",
1250
- "open-llm-leaderboard/bloom-560m-4bit-alpaca-auto-eval-adapter-applied",
1251
- "BreadAi/gpt-YA-1-1_160M",
1252
- "microsoft/DialoGPT-large",
1253
- "facebook/opt-125m",
1254
- "huggingtweets/jerma985",
1255
- "Locutusque/gpt2-conversational-or-qa",
1256
- "concedo/Pythia-70M-ChatSalad",
1257
- "roneneldan/TinyStories-1M",
1258
- "BreadAi/DiscordPy",
1259
- "bigcode/gpt_bigcode-santacoder",
1260
- "Tincando/fiction_story_generator",
1261
- "klosax/pythia-70m-deduped-step44k-92bt",
1262
- "Quake24/easyTermsSummerizer",
1263
- "BreadAi/gpt-YA-1-1_70M",
1264
- "EleutherAI/pythia-160m",
1265
- "euclaise/gpt-neox-122m-minipile-digits",
1266
- "MBZUAI/lamini-cerebras-590m",
1267
- "nicholasKluge/Aira-124M",
1268
- "MayaPH/FinOPT-Washington",
1269
- "cyberagent/open-calm-large",
1270
- "BreadAi/StoryPy",
1271
- "EleutherAI/pythia-70m",
1272
- "BreadAi/gpt-Youtube",
1273
- "roneneldan/TinyStories-33M",
1274
- "EleutherAI/pythia-70m-deduped",
1275
- "lgaalves/gpt2_guanaco-dolly-platypus",
1276
- "Corianas/Quokka_590m",
1277
- "lgaalves/gpt2_platypus-dolly-guanaco",
1278
- "cyberagent/open-calm-7b",
1279
- "RWKV/rwkv-4-169m-pile",
1280
- "gpt2",
1281
- "roneneldan/TinyStories-28M",
1282
- "lgaalves/gpt2_open-platypus",
1283
- "gpt2",
1284
- "SaylorTwift/gpt2_test",
1285
- "roneneldan/TinyStories-3M",
1286
- "nthngdy/pythia-owt2-70m-50k",
1287
- "Corianas/256_5epoch",
1288
- "roneneldan/TinyStories-8M",
1289
- "lgaalves/gpt2-dolly",
1290
- "nthngdy/pythia-owt2-70m-100k",
1291
- "aisquared/dlite-v2-124m",
1292
- "mncai/SGPT-1.3B-insurance-epoch10",
1293
- "huggingtweets/gladosystem",
1294
- "abhiramtirumala/DialoGPT-sarcastic-medium",
1295
- "MBZUAI/lamini-cerebras-256m",
1296
- "cerebras/Cerebras-GPT-111M",
1297
- "uberkie/metharme-1.3b-finetuned",
1298
- "MBZUAI/lamini-cerebras-111m",
1299
- "psyche/kogpt",
1300
- "Corianas/Quokka_256m",
1301
- "vicgalle/gpt2-alpaca-gpt4",
1302
- "aisquared/dlite-v1-124m",
1303
- "Mikivis/xuanxuan",
1304
- "MBZUAI/LaMini-GPT-124M",
1305
- "vicgalle/gpt2-alpaca",
1306
- "huashiyiqike/testmodel",
1307
- "Corianas/111m",
1308
- "baseline",
1309
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/tools/plots.py DELETED
@@ -1,158 +0,0 @@
1
- import numpy as np
2
- import pandas as pd
3
- import plotly.express as px
4
- from plotly.graph_objs import Figure
5
-
6
- from src.display.utils import AutoEvalColumn, Task, Tasks
7
- from src.display.utils import human_baseline_row as HUMAN_BASELINE
8
- from src.leaderboard.filter_models import FLAGGED_MODELS
9
- from src.leaderboard.read_evals import EvalResult
10
-
11
-
12
- def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
13
- """
14
- Generates a DataFrame containing the maximum scores until each date.
15
-
16
- :param results_df: A DataFrame containing result information including metric scores and dates.
17
- :return: A new DataFrame containing the maximum scores until each date for every metric.
18
- """
19
- # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
20
- results_df = pd.DataFrame(raw_data)
21
- # results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
22
- results_df.sort_values(by="date", inplace=True)
23
-
24
- # Step 2: Initialize the scores dictionary
25
- scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
26
-
27
- # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
28
- for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
29
- current_max = 0
30
- last_date = ""
31
- column = task.col_name
32
- for _, row in results_df.iterrows():
33
- current_model = row["full_model"]
34
- # We ignore models that are flagged/no longer on the hub/not finished
35
- to_ignore = (
36
- not row["still_on_hub"]
37
- or not row["not_flagged"]
38
- or current_model in FLAGGED_MODELS
39
- or row["status"] != "FINISHED"
40
- )
41
- if to_ignore:
42
- continue
43
-
44
- current_date = row["date"]
45
- if task.benchmark == "Average":
46
- current_score = np.mean(list(row["results"].values()))
47
- else:
48
- current_score = row["results"][task.benchmark]
49
-
50
- if current_score > current_max:
51
- if current_date == last_date and len(scores[column]) > 0:
52
- scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
53
- else:
54
- scores[column].append({"model": current_model, "date": current_date, "score": current_score})
55
- current_max = current_score
56
- last_date = current_date
57
-
58
- # Step 4: Return all dictionaries as DataFrames
59
- return {k: pd.DataFrame(v) for k, v in scores.items()}
60
-
61
-
62
- def create_plot_df(scores_df: dict[str : pd.DataFrame]) -> pd.DataFrame:
63
- """
64
- Transforms the scores DataFrame into a new format suitable for plotting.
65
-
66
- :param scores_df: A DataFrame containing metric scores and dates.
67
- :return: A new DataFrame reshaped for plotting purposes.
68
- """
69
- # Initialize the list to store DataFrames
70
- dfs = []
71
- # Iterate over the cols and create a new DataFrame for each column
72
- for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
73
- d = scores_df[col].reset_index(drop=True)
74
- d["task"] = col
75
- dfs.append(d)
76
-
77
- # Concatenate all the created DataFrames
78
- concat_df = pd.concat(dfs, ignore_index=True)
79
-
80
- # Sort values by 'date'
81
- concat_df.sort_values(by="date", inplace=True)
82
- concat_df.reset_index(drop=True, inplace=True)
83
- return concat_df
84
-
85
-
86
- def create_metric_plot_obj(df: pd.DataFrame, metrics: list[str], title: str) -> Figure:
87
- """
88
- Create a Plotly figure object with lines representing different metrics
89
- and horizontal dotted lines representing human baselines.
90
-
91
- :param df: The DataFrame containing the metric values, names, and dates.
92
- :param metrics: A list of strings representing the names of the metrics
93
- to be included in the plot.
94
- :param title: A string representing the title of the plot.
95
- :return: A Plotly figure object with lines representing metrics and
96
- horizontal dotted lines representing human baselines.
97
- """
98
-
99
- # Filter the DataFrame based on the specified metrics
100
- df = df[df["task"].isin(metrics)]
101
-
102
- # Filter the human baselines based on the specified metrics
103
- filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
104
-
105
- # Create a line figure using plotly express with specified markers and custom data
106
- fig = px.line(
107
- df,
108
- x="date",
109
- y="score",
110
- color="task",
111
- markers=True,
112
- custom_data=["task", "score", "model"],
113
- title=title,
114
- )
115
-
116
- # Update hovertemplate for better hover interaction experience
117
- fig.update_traces(
118
- hovertemplate="<br>".join(
119
- [
120
- "Model Name: %{customdata[2]}",
121
- "Metric Name: %{customdata[0]}",
122
- "Date: %{x}",
123
- "Metric Value: %{y}",
124
- ]
125
- )
126
- )
127
-
128
- # Update the range of the y-axis
129
- fig.update_layout(yaxis_range=[0, 100])
130
-
131
- # Create a dictionary to hold the color mapping for each metric
132
- metric_color_mapping = {}
133
-
134
- # Map each metric name to its color in the figure
135
- for trace in fig.data:
136
- metric_color_mapping[trace.name] = trace.line.color
137
-
138
- # Iterate over filtered human baselines and add horizontal lines to the figure
139
- for metric, value in filtered_human_baselines.items():
140
- color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
141
- location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
142
- # Add horizontal line with matched color and positioned annotation
143
- fig.add_hline(
144
- y=value,
145
- line_dash="dot",
146
- annotation_text=f"{metric} human baseline",
147
- annotation_position=location,
148
- annotation_font_size=10,
149
- annotation_font_color=color,
150
- line_color=color,
151
- )
152
-
153
- return fig
154
-
155
-
156
- # Example Usage:
157
- # human_baselines dictionary is defined.
158
- # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
style.css DELETED
@@ -1,28 +0,0 @@
1
- body {
2
- padding: 2rem;
3
- font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
4
- }
5
-
6
- h1 {
7
- font-size: 16px;
8
- margin-top: 0;
9
- }
10
-
11
- p {
12
- color: rgb(107, 114, 128);
13
- font-size: 15px;
14
- margin-bottom: 10px;
15
- margin-top: 5px;
16
- }
17
-
18
- .card {
19
- max-width: 620px;
20
- margin: 0 auto;
21
- padding: 16px;
22
- border: 1px solid lightgray;
23
- border-radius: 16px;
24
- }
25
-
26
- .card p:last-child {
27
- margin-bottom: 0;
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
uv.lock ADDED
The diff for this file is too large to render. See raw diff