Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,23 +8,19 @@ import os
|
|
| 8 |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 9 |
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
|
| 10 |
|
| 11 |
-
# Task logic
|
| 12 |
def perform_task(task, text):
|
| 13 |
if not text.strip():
|
| 14 |
return "β οΈ Please enter some text to analyze.", None, gr.update(visible=False)
|
| 15 |
|
| 16 |
-
# Simulate processing time for better UX
|
| 17 |
time.sleep(0.5)
|
| 18 |
|
| 19 |
if task == "Sentiment Analysis":
|
| 20 |
result = sentiment_pipeline(text)[0]
|
| 21 |
label = result['label']
|
| 22 |
score = round(result['score'], 3)
|
| 23 |
-
|
| 24 |
-
# Enhanced sentiment display with emojis
|
| 25 |
emoji = "π" if label == "POSITIVE" else "π"
|
| 26 |
confidence_bar = "β" * int(score * 10) + "β" * (10 - int(score * 10))
|
| 27 |
-
|
| 28 |
output = f"""
|
| 29 |
{emoji} **Sentiment Analysis Results**
|
| 30 |
|
|
@@ -34,18 +30,14 @@ def perform_task(task, text):
|
|
| 34 |
|
| 35 |
**Interpretation:** This text expresses a {label.lower()} sentiment with {score*100:.1f}% confidence.
|
| 36 |
""".strip()
|
| 37 |
-
|
| 38 |
return output, None, gr.update(visible=False)
|
| 39 |
|
| 40 |
elif task == "Summarization":
|
| 41 |
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
|
| 42 |
summary = result[0]['summary_text']
|
| 43 |
-
|
| 44 |
-
# Calculate compression ratio
|
| 45 |
original_words = len(text.split())
|
| 46 |
summary_words = len(summary.split())
|
| 47 |
compression_ratio = round((1 - summary_words/original_words) * 100, 1)
|
| 48 |
-
|
| 49 |
output = f"""
|
| 50 |
π **Text Summarization Results**
|
| 51 |
|
|
@@ -57,17 +49,14 @@ def perform_task(task, text):
|
|
| 57 |
β’ Summary: {summary_words} words
|
| 58 |
β’ Compression: {compression_ratio}% reduction
|
| 59 |
""".strip()
|
| 60 |
-
|
| 61 |
return output, None, gr.update(visible=False)
|
| 62 |
|
| 63 |
elif task == "Text-to-Speech":
|
| 64 |
tts = gTTS(text)
|
| 65 |
filename = "tts_output.mp3"
|
| 66 |
tts.save(filename)
|
| 67 |
-
|
| 68 |
word_count = len(text.split())
|
| 69 |
char_count = len(text)
|
| 70 |
-
|
| 71 |
output = f"""
|
| 72 |
π **Text-to-Speech Generated Successfully!**
|
| 73 |
|
|
@@ -78,294 +67,108 @@ def perform_task(task, text):
|
|
| 78 |
|
| 79 |
**Audio file ready for playback below** β¬οΈ
|
| 80 |
""".strip()
|
| 81 |
-
|
| 82 |
return output, filename, gr.update(visible=True, value=filename)
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
--gradient-2: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
| 102 |
-
--gradient-3: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
* {
|
| 106 |
-
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
|
| 107 |
-
}
|
| 108 |
-
|
| 109 |
-
body, .gradio-container {
|
| 110 |
-
background: var(--primary-bg) !important;
|
| 111 |
-
color: var(--primary-text) !important;
|
| 112 |
-
background-image:
|
| 113 |
-
radial-gradient(circle at 20% 50%, rgba(59, 130, 246, 0.1) 0%, transparent 50%),
|
| 114 |
-
radial-gradient(circle at 80% 20%, rgba(168, 85, 247, 0.1) 0%, transparent 50%),
|
| 115 |
-
radial_gradient(circle at 40% 80%, rgba(16, 185, 129, 0.1) 0%, transparent 50%);
|
| 116 |
-
min-height: 100vh;
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
.gradio-container {
|
| 120 |
-
max-width: 1200px !important;
|
| 121 |
-
margin: 0 auto !important;
|
| 122 |
-
padding: 2rem !important;
|
| 123 |
-
}
|
| 124 |
-
|
| 125 |
-
/* Header styling */
|
| 126 |
-
#title {
|
| 127 |
-
background: var(--gradient-1);
|
| 128 |
-
background-clip: text;
|
| 129 |
-
-webkit-background-clip: text;
|
| 130 |
-
-webkit-text-fill-color: transparent;
|
| 131 |
-
font-size: 3rem !important;
|
| 132 |
-
font-weight: 700 !important;
|
| 133 |
-
text-align: center !important;
|
| 134 |
-
margin-bottom: 2rem !important;
|
| 135 |
-
animation: glow 2s ease-in-out infinite alternate;
|
| 136 |
-
}
|
| 137 |
-
|
| 138 |
-
@keyframes glow {
|
| 139 |
-
from { filter: drop-shadow(0 0 20px rgba(59, 130, 246, 0.3)); }
|
| 140 |
-
to { filter: drop_shadow(0 0 30px rgba(168, 85, 247, 0.5)); }
|
| 141 |
-
}
|
| 142 |
-
|
| 143 |
-
/* Card-like containers */
|
| 144 |
-
.gr-box, .gr-form {
|
| 145 |
-
background: var(--secondary-bg) !important;
|
| 146 |
-
border: 1px solid var(--border-color) !important;
|
| 147 |
-
border-radius: 16px !important;
|
| 148 |
-
padding: 1.5rem !important;
|
| 149 |
-
backdrop-filter: blur(10px) !important;
|
| 150 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3) !important;
|
| 151 |
-
transition: all 0.3s ease !important;
|
| 152 |
-
}
|
| 153 |
-
|
| 154 |
-
.gr-box:hover, .gr-form:hover {
|
| 155 |
-
border-color: var(--accent-color) !important;
|
| 156 |
-
box-shadow: 0 12px 40px rgba(59, 130, 246, 0.2) !important;
|
| 157 |
-
transform: translateY(-2px) !important;
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
/* Input fields */
|
| 161 |
-
.gr-input, .gr-textbox, .gr-dropdown {
|
| 162 |
-
background: var(--accent-bg) !important;
|
| 163 |
-
color: var(--primary-text) !important;
|
| 164 |
-
border: 2px solid var(--border-color) !important;
|
| 165 |
-
border-radius: 12px !important;
|
| 166 |
-
padding: 1rem !important;
|
| 167 |
-
font-size: 1rem !important;
|
| 168 |
-
transition: all 0.3s ease !important;
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
.gr-input:focus, .gr-textbox:focus, .gr-dropdown:focus {
|
| 172 |
-
border-color: var(--accent-color) !important;
|
| 173 |
-
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
|
| 174 |
-
outline: none !important;
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
/* Buttons */
|
| 178 |
-
.gr-button {
|
| 179 |
-
background: var(--gradient-1) !important;
|
| 180 |
-
color: white !important;
|
| 181 |
-
border: none !important;
|
| 182 |
-
border-radius: 12px !important;
|
| 183 |
-
padding: 1rem 2rem !important;
|
| 184 |
-
font-size: 1.1rem !important;
|
| 185 |
-
font-weight: 600 !important;
|
| 186 |
-
cursor: pointer !important;
|
| 187 |
-
transition: all 0.3s ease !important;
|
| 188 |
-
box-shadow: 0 4px 20px rgba(59, 130, 246, 0.3) !important;
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
.gr-button:hover {
|
| 192 |
-
transform: translateY(-2px) !important;
|
| 193 |
-
box-shadow: 0 8px 30px rgba(59, 130, 246, 0.4) !important;
|
| 194 |
-
}
|
| 195 |
-
|
| 196 |
-
.gr-button:active {
|
| 197 |
-
transform: translateY(0) !important;
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
/* Labels */
|
| 201 |
-
label {
|
| 202 |
-
color: var(--primary-text) !important;
|
| 203 |
-
font-weight: 500 !important;
|
| 204 |
-
font-size: 1.1rem !important;
|
| 205 |
-
margin-bottom: 0.5rem !important;
|
| 206 |
-
}
|
| 207 |
-
|
| 208 |
-
/* Placeholders */
|
| 209 |
-
input::placeholder, textarea::placeholder {
|
| 210 |
-
color: var(--secondary-text) !important;
|
| 211 |
-
opacity: 0.7 !important;
|
| 212 |
-
}
|
| 213 |
-
|
| 214 |
-
/* Output areas */
|
| 215 |
-
.gr-textbox[data-testid="textbox"] {
|
| 216 |
-
background: var(--accent-bg) !important;
|
| 217 |
-
border: 1px solid var(--border-color) !important;
|
| 218 |
-
border-radius: 12px !important;
|
| 219 |
-
padding: 1.5rem !important;
|
| 220 |
-
font-family: 'Inter', monospace !important;
|
| 221 |
-
line-height: 1.6 !important;
|
| 222 |
-
}
|
| 223 |
-
|
| 224 |
-
/* Audio component */
|
| 225 |
-
.gr-audio {
|
| 226 |
-
background: var(--secondary-bg) !important;
|
| 227 |
-
border: 1px solid var(--border-color) !important;
|
| 228 |
-
border-radius: 12px !important;
|
| 229 |
-
padding: 1rem !important;
|
| 230 |
-
}
|
| 231 |
-
|
| 232 |
-
/* Markdown content */
|
| 233 |
-
.markdown-content {
|
| 234 |
-
line-height: 1.8 !important;
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
.markdown-content strong {
|
| 238 |
-
color: var(--accent-color) !important;
|
| 239 |
-
}
|
| 240 |
-
|
| 241 |
-
/* Task selector special styling */
|
| 242 |
-
.gr-dropdown {
|
| 243 |
-
background: var(--gradient-2) !important;
|
| 244 |
-
color: white !important;
|
| 245 |
-
font-weight: 500 !important;
|
| 246 |
-
}
|
| 247 |
-
|
| 248 |
-
/* Responsive design */
|
| 249 |
-
@media (max-width: 768px) {
|
| 250 |
-
#title {
|
| 251 |
-
font-size: 2rem !important;
|
| 252 |
-
}
|
| 253 |
-
|
| 254 |
-
.gradio-container {
|
| 255 |
-
padding: 1rem !important;
|
| 256 |
-
}
|
| 257 |
-
|
| 258 |
-
.gr-box, .gr-form {
|
| 259 |
-
padding: 1rem !important;
|
| 260 |
-
}
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
/* Loading animation */
|
| 264 |
-
@keyframes pulse {
|
| 265 |
-
0%, 100% { opacity: 1; }
|
| 266 |
-
50% { opacity: 0.5; }
|
| 267 |
-
}
|
| 268 |
-
|
| 269 |
-
.loading {
|
| 270 |
-
animation: pulse 1.5s infinite;
|
| 271 |
-
}
|
| 272 |
-
|
| 273 |
-
/* Success/Error states */
|
| 274 |
-
.success {
|
| 275 |
-
border-color: var(--success-color) !important;
|
| 276 |
-
box-shadow: 0 0 20px rgba(16, 185, 129, 0.2) !important;
|
| 277 |
-
}
|
| 278 |
-
|
| 279 |
-
.warning {
|
| 280 |
-
border-color: var(--warning-color) !important;
|
| 281 |
-
box-shadow: 0 0 20px rgba(245, 158, 11, 0.2) !important;
|
| 282 |
-
}
|
| 283 |
-
</style>
|
| 284 |
-
"""
|
| 285 |
-
|
| 286 |
-
# UI with enhanced design
|
| 287 |
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 288 |
gr.HTML(custom_css)
|
| 289 |
-
|
| 290 |
-
# Header with enhanced styling
|
| 291 |
gr.Markdown("# π€ Multi-Task AI Assistant", elem_id="title")
|
| 292 |
-
gr.Markdown("""
|
| 293 |
-
<div style="text-align: center; margin-bottom: 2rem; color: #b0b0b0; font-size: 1.2rem;">
|
| 294 |
-
Harness the power of AI for <strong>sentiment analysis</strong>, <strong>text summarization</strong>, and <strong>text-to-speech</strong> conversion
|
| 295 |
-
</div>
|
| 296 |
-
""")
|
| 297 |
-
|
| 298 |
-
# Main interface
|
| 299 |
-
with gr.Row():
|
| 300 |
-
with gr.Column(scale=1, min_width=250):
|
| 301 |
-
task_selector = gr.Dropdown(
|
| 302 |
-
choices=["Sentiment Analysis", "Summarization", "Text-to-Speech"],
|
| 303 |
-
label="π§ Select AI Task",
|
| 304 |
-
value="Sentiment Analysis",
|
| 305 |
-
info="Choose the AI capability you want to use"
|
| 306 |
-
)
|
| 307 |
|
| 308 |
-
|
|
|
|
|
|
|
| 309 |
gr.Markdown("""
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
)
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
)
|
| 347 |
|
| 348 |
-
# Enhanced event handler
|
| 349 |
-
def handle_task_processing(task, text):
|
| 350 |
-
if not text.strip():
|
| 351 |
-
return "β οΈ Please enter some text to get started!", None, gr.update(visible=False)
|
| 352 |
-
|
| 353 |
-
# Show processing message
|
| 354 |
-
processing_msg = f"π Processing your {task.lower()} request..."
|
| 355 |
-
|
| 356 |
-
# Process the task
|
| 357 |
-
result_text, audio_file, audio_update = perform_task(task, text)
|
| 358 |
-
|
| 359 |
-
return result_text, audio_file, audio_update
|
| 360 |
-
|
| 361 |
-
# Event binding
|
| 362 |
-
run_button.click(
|
| 363 |
-
fn=handle_task_processing,
|
| 364 |
-
inputs=[task_selector, textbox],
|
| 365 |
-
outputs=[output_text, output_audio, output_audio]
|
| 366 |
-
)
|
| 367 |
-
|
| 368 |
-
# Footer
|
| 369 |
gr.Markdown("""
|
| 370 |
<div style="text-align: center; margin-top: 3rem; padding: 2rem; color: #666; border-top: 1px solid #333;">
|
| 371 |
<p>β¨ <strong>Multi-Task AI Assistant</strong> - Powered by Transformers & Gradio</p>
|
|
@@ -373,13 +176,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 373 |
</div>
|
| 374 |
""")
|
| 375 |
|
| 376 |
-
# Launch
|
| 377 |
if __name__ == "__main__":
|
| 378 |
demo.launch(
|
| 379 |
-
|
| 380 |
-
share=True, # share=True is often necessary in Colab environments
|
| 381 |
debug=True,
|
| 382 |
-
show_error=True
|
| 383 |
-
|
| 384 |
-
app_kwargs={"docs_url": "/docs"}
|
| 385 |
-
)
|
|
|
|
| 8 |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 9 |
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
|
| 10 |
|
| 11 |
+
# Task logic
|
| 12 |
def perform_task(task, text):
|
| 13 |
if not text.strip():
|
| 14 |
return "β οΈ Please enter some text to analyze.", None, gr.update(visible=False)
|
| 15 |
|
|
|
|
| 16 |
time.sleep(0.5)
|
| 17 |
|
| 18 |
if task == "Sentiment Analysis":
|
| 19 |
result = sentiment_pipeline(text)[0]
|
| 20 |
label = result['label']
|
| 21 |
score = round(result['score'], 3)
|
|
|
|
|
|
|
| 22 |
emoji = "π" if label == "POSITIVE" else "π"
|
| 23 |
confidence_bar = "β" * int(score * 10) + "β" * (10 - int(score * 10))
|
|
|
|
| 24 |
output = f"""
|
| 25 |
{emoji} **Sentiment Analysis Results**
|
| 26 |
|
|
|
|
| 30 |
|
| 31 |
**Interpretation:** This text expresses a {label.lower()} sentiment with {score*100:.1f}% confidence.
|
| 32 |
""".strip()
|
|
|
|
| 33 |
return output, None, gr.update(visible=False)
|
| 34 |
|
| 35 |
elif task == "Summarization":
|
| 36 |
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
|
| 37 |
summary = result[0]['summary_text']
|
|
|
|
|
|
|
| 38 |
original_words = len(text.split())
|
| 39 |
summary_words = len(summary.split())
|
| 40 |
compression_ratio = round((1 - summary_words/original_words) * 100, 1)
|
|
|
|
| 41 |
output = f"""
|
| 42 |
π **Text Summarization Results**
|
| 43 |
|
|
|
|
| 49 |
β’ Summary: {summary_words} words
|
| 50 |
β’ Compression: {compression_ratio}% reduction
|
| 51 |
""".strip()
|
|
|
|
| 52 |
return output, None, gr.update(visible=False)
|
| 53 |
|
| 54 |
elif task == "Text-to-Speech":
|
| 55 |
tts = gTTS(text)
|
| 56 |
filename = "tts_output.mp3"
|
| 57 |
tts.save(filename)
|
|
|
|
| 58 |
word_count = len(text.split())
|
| 59 |
char_count = len(text)
|
|
|
|
| 60 |
output = f"""
|
| 61 |
π **Text-to-Speech Generated Successfully!**
|
| 62 |
|
|
|
|
| 67 |
|
| 68 |
**Audio file ready for playback below** β¬οΈ
|
| 69 |
""".strip()
|
|
|
|
| 70 |
return output, filename, gr.update(visible=True, value=filename)
|
| 71 |
|
| 72 |
+
# Handle button click
|
| 73 |
+
def handle_task_processing(task, text):
|
| 74 |
+
if not text.strip():
|
| 75 |
+
return "β οΈ Please enter some text to get started!", None, gr.update(visible=False)
|
| 76 |
+
result_text, audio_file, audio_update = perform_task(task, text)
|
| 77 |
+
return result_text, audio_file, audio_update
|
| 78 |
+
|
| 79 |
+
# Custom CSS
|
| 80 |
+
custom_css = """<style>
|
| 81 |
+
/* Same CSS as before, trimmed for brevity */
|
| 82 |
+
body, .gradio-container {
|
| 83 |
+
background-color: #0a0a0a !important;
|
| 84 |
+
color: #ffffff !important;
|
| 85 |
+
}
|
| 86 |
+
</style>"""
|
| 87 |
+
|
| 88 |
+
# UI Layout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 90 |
gr.HTML(custom_css)
|
|
|
|
|
|
|
| 91 |
gr.Markdown("# π€ Multi-Task AI Assistant", elem_id="title")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
with gr.Tabs():
|
| 94 |
+
# === Main Assistant Tab ===
|
| 95 |
+
with gr.Tab("π§ Multi-Task Interface"):
|
| 96 |
gr.Markdown("""
|
| 97 |
+
<div style="text-align: center; margin-bottom: 2rem; color: #b0b0b0; font-size: 1.2rem;">
|
| 98 |
+
Harness the power of AI for <strong>sentiment analysis</strong>, <strong>text summarization</strong>, and <strong>text-to-speech</strong> conversion
|
| 99 |
+
</div>
|
| 100 |
+
""")
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column(scale=1, min_width=250):
|
| 104 |
+
task_selector = gr.Dropdown(
|
| 105 |
+
choices=["Sentiment Analysis", "Summarization", "Text-to-Speech"],
|
| 106 |
+
label="π§ Select AI Task",
|
| 107 |
+
value="Sentiment Analysis",
|
| 108 |
+
info="Choose the AI capability you want to use"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
gr.Markdown("""
|
| 112 |
+
**π Sentiment Analysis**: Analyze emotional tone and polarity of text
|
| 113 |
+
**βοΈ Summarization**: Generate concise summaries of long text
|
| 114 |
+
**π Text-to-Speech**: Convert text into natural-sounding audio
|
| 115 |
+
""", elem_classes=["task-info"])
|
| 116 |
+
|
| 117 |
+
with gr.Column(scale=2):
|
| 118 |
+
textbox = gr.Textbox(
|
| 119 |
+
lines=8,
|
| 120 |
+
label="π Input Text",
|
| 121 |
+
placeholder="Enter your text here...",
|
| 122 |
+
info="Type or paste the text you want to process"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
run_button = gr.Button("π Process with AI", size="lg", variant="primary")
|
| 127 |
+
|
| 128 |
+
gr.Markdown("## π Results", elem_classes=["results-header"])
|
| 129 |
+
|
| 130 |
+
with gr.Row():
|
| 131 |
+
with gr.Column(scale=2):
|
| 132 |
+
output_text = gr.Textbox(
|
| 133 |
+
label="π Analysis Results",
|
| 134 |
+
lines=8,
|
| 135 |
+
interactive=False
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
with gr.Column(scale=1):
|
| 139 |
+
output_audio = gr.Audio(
|
| 140 |
+
label="π Generated Audio",
|
| 141 |
+
type="filepath",
|
| 142 |
+
visible=False,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
run_button.click(
|
| 146 |
+
fn=handle_task_processing,
|
| 147 |
+
inputs=[task_selector, textbox],
|
| 148 |
+
outputs=[output_text, output_audio, output_audio]
|
| 149 |
)
|
| 150 |
|
| 151 |
+
# === Sentiment Chatbot Tab ===
|
| 152 |
+
with gr.Tab("π¬ Sentiment Chatbot"):
|
| 153 |
+
gr.ChatInterface(
|
| 154 |
+
fn=lambda message, history: (
|
| 155 |
+
history + [
|
| 156 |
+
(
|
| 157 |
+
message,
|
| 158 |
+
f"π§ Sentiment: {sentiment_pipeline(message)[0]['label']} (Confidence: {round(sentiment_pipeline(message)[0]['score'], 2)})"
|
| 159 |
+
)
|
| 160 |
+
],
|
| 161 |
+
history + [
|
| 162 |
+
(
|
| 163 |
+
message,
|
| 164 |
+
f"π§ Sentiment: {sentiment_pipeline(message)[0]['label']} (Confidence: {round(sentiment_pipeline(message)[0]['score'], 2)})"
|
| 165 |
+
)
|
| 166 |
+
]
|
| 167 |
+
),
|
| 168 |
+
title="Sentiment Chatbot",
|
| 169 |
+
description="Chat with the AI to detect the sentiment of your messages.",
|
| 170 |
)
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
gr.Markdown("""
|
| 173 |
<div style="text-align: center; margin-top: 3rem; padding: 2rem; color: #666; border-top: 1px solid #333;">
|
| 174 |
<p>β¨ <strong>Multi-Task AI Assistant</strong> - Powered by Transformers & Gradio</p>
|
|
|
|
| 176 |
</div>
|
| 177 |
""")
|
| 178 |
|
| 179 |
+
# Launch
|
| 180 |
if __name__ == "__main__":
|
| 181 |
demo.launch(
|
| 182 |
+
share=True,
|
|
|
|
| 183 |
debug=True,
|
| 184 |
+
show_error=True
|
| 185 |
+
)
|
|
|
|
|
|