Spaces:
Running
Running
| import torch | |
| from transformers import AutoModel, AutoImageProcessor | |
| from datasets import load_dataset | |
| from safetensors.torch import save_file | |
| ds = load_dataset("wbensvage/clothes_desc")["train"] | |
| ds = ds.select_columns(["image"]) | |
| model_name = "google/siglip2-large-patch16-512" | |
| model = AutoModel.from_pretrained(model_name, device_map="auto").eval() | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| def encode_images(examples): | |
| images = examples["image"] | |
| inputs = processor(images=images, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| image_embeddings = model.get_image_features(**inputs) | |
| return {"vector": image_embeddings.detach().cpu()} | |
| print(model.device) | |
| ds = ds.map(encode_images, batched=True, batch_size=32) | |
| ds.set_format(type="torch", columns=["vector"]) | |
| print(ds["vector"].shape) | |
| save_file({"vectors": ds["vector"]}, "clothes_desc.safetensors") | |