NaomiS commited on
Commit
f977fd5
·
0 Parent(s):

Initial commit

Browse files
Files changed (39) hide show
  1. .gitattributes +1 -0
  2. .github/workflows/hf_leaderboard_deployment.yml +25 -0
  3. .github/workflows/test_and_compile.yml +76 -0
  4. .gitignore +2 -0
  5. Dockerfile +14 -0
  6. LICENSE +201 -0
  7. README.md +76 -0
  8. app.py +559 -0
  9. examples/.DS_Store +0 -0
  10. examples/additional_info.json +17 -0
  11. examples/results_and_parameters.csv +241 -0
  12. normalization_example.ipynb +103 -0
  13. requirements.txt +9 -0
  14. results/.DS_Store +0 -0
  15. results/114be1f0-5a41-43a5-b4e6-7fb683bc01ec/additional_info.json +1 -0
  16. results/114be1f0-5a41-43a5-b4e6-7fb683bc01ec/results_and_parameters.csv +0 -0
  17. results/2ce4a907-7ae3-45d3-a07a-558f8d0d758b/additional_info.json +1 -0
  18. results/2ce4a907-7ae3-45d3-a07a-558f8d0d758b/results_and_parameters.csv +286 -0
  19. results/80100fc6-dc1a-4514-b946-341157eaf816/additional_info.json +1 -0
  20. results/80100fc6-dc1a-4514-b946-341157eaf816/results_and_parameters.csv +0 -0
  21. results/compiled.pkl +3 -0
  22. tests/.DS_Store +0 -0
  23. tests/__init__.py +0 -0
  24. tests/resources/.DS_Store +0 -0
  25. tests/resources/inputs/.DS_Store +0 -0
  26. tests/resources/inputs/test_submission_1/results_and_parameters.csv +241 -0
  27. tests/resources/outputs/.DS_Store +0 -0
  28. tests/resources/outputs/test_output.pkl +0 -0
  29. tests/test_compile_results.py +83 -0
  30. utils/.DS_Store +0 -0
  31. utils/__init__.py +1 -0
  32. utils/about_page.txt +38 -0
  33. utils/compile_results.py +534 -0
  34. utils/compute_tools.py +154 -0
  35. utils/constants.py +129 -0
  36. utils/input_validation.py +218 -0
  37. utils/model_info.json +52 -0
  38. utils/normalizer/.DS_Store +0 -0
  39. utils/normalizer/leaderboard_combined/normalizer.json +78 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ results/compiled.pkl filter=lfs diff=lfs merge=lfs -text
.github/workflows/hf_leaderboard_deployment.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: HF Leaderboard Deployement
2
+
3
+ on:
4
+ workflow_run:
5
+ workflows: ["Test and Compile"]
6
+ branches: [main]
7
+ types:
8
+ - completed
9
+
10
+ permissions:
11
+ contents: read
12
+
13
+ jobs:
14
+ sync-to-hub:
15
+ runs-on: ubuntu-latest
16
+ if: ${{ github.event.workflow_run.conclusion == 'success' }}
17
+ steps:
18
+ - uses: actions/checkout@v4
19
+ with:
20
+ fetch-depth: 0
21
+ lfs: true
22
+ - name: Push to huggingface main leaderboard
23
+ env:
24
+ HF_TOKEN: ${{ secrets.MAIN_EXT_HF_GEOBENCH }}
25
+ run: git push https://test-gb:$HF_TOKEN@huggingface.co/spaces/aialliance/GEO-Bench-2-Leaderboard main
.github/workflows/test_and_compile.yml ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This workflow will install Python dependencies, run tests and lint with a single version of Python
2
+ # For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
3
+
4
+ name: Test and Compile
5
+
6
+ on:
7
+ push:
8
+ branches: [ "main" ]
9
+ pull_request:
10
+ branches: [ "main" ]
11
+
12
+ permissions:
13
+ contents: read
14
+
15
+ jobs:
16
+ build-and-test:
17
+ runs-on: ubuntu-latest
18
+ steps:
19
+ - uses: actions/checkout@v4
20
+ - name: Set up Python 3.10
21
+ uses: actions/setup-python@v3
22
+ with:
23
+ python-version: "3.10"
24
+ - name: Install dependencies
25
+ run: |
26
+ python -m pip install --upgrade pip
27
+ pip install flake8 pytest pytest-cov
28
+ if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
29
+ - name: Lint with flake8
30
+ run: |
31
+ # stop the build if there are Python syntax errors or undefined names
32
+ flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
33
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
34
+ flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
35
+ - name: Test with pytest
36
+ run: |
37
+ pytest -s --cov=. tests/
38
+
39
+ validate-input-and-recompute:
40
+ needs: build-and-test
41
+ runs-on: ubuntu-latest
42
+ permissions:
43
+ contents: write
44
+ steps:
45
+ - uses: actions/checkout@v4
46
+ - name: Set up Python 3.10
47
+ uses: actions/setup-python@v3
48
+ with:
49
+ python-version: "3.10"
50
+ - name: Install dependencies
51
+ run: |
52
+ python -m pip install --upgrade pip
53
+ pip install flake8 pytest pytest-cov
54
+ if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
55
+ - name: Validate new submissions
56
+ run: python -m utils.input_validation
57
+ - name: Compile all results
58
+ run: python -m utils.compile_results
59
+ - name: Add results
60
+ run: |
61
+ git config --global user.name 'naomi-simumba'
62
+ git config --global user.email 'naomi-simumba@users.noreply.github.com'
63
+ git add .
64
+ git commit -m "auto update"
65
+ git push
66
+
67
+
68
+
69
+ check-file-size: #HF has a 10MB filesize limit
70
+ needs: build-and-test
71
+ runs-on: ubuntu-latest
72
+ steps:
73
+ - name: Check large files
74
+ uses: ActionsDesk/lfs-warning@v2.0
75
+ with:
76
+ filesizelimit: 10485760
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ utils/__pycache__/
2
+ .DS_Store
Dockerfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+ COPY ./app.py /code/app.py
7
+ COPY ./results /code/results
8
+ COPY ./utils /code/utils
9
+
10
+
11
+
12
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
13
+
14
+ CMD ["streamlit", "run", "/code/app.py", "--server.address", "0.0.0.0", "--server.port", "7860"]
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: GEO-Bench Leaderboard
3
+ emoji: 🏆
4
+ colorFrom: purple
5
+ colorTo: green
6
+ sdk: docker
7
+ pinned: false
8
+ ---
9
+
10
+ # 🏆 GEO-Bench Leaderboard
11
+
12
+ The [GEO-Bench leaderboard](https://huggingface.co/spaces/aialliance/GEO-Bench-Leaderboard) tracks performance of geospatial foundation models on various benchmark datasets using the GEO-Bench benchmarking framework.
13
+
14
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
15
+ [![Language: Python](https://img.shields.io/badge/language-Python%203.10%2B-green?logo=python&logoColor=green)](https://www.python.org)
16
+
17
+ ## 1. How to Submit New Results
18
+
19
+ ### 1.1. Create New Submission Directory
20
+ Create a new folder in the `new_submission` top directory:
21
+ ```bash
22
+ geobench_leaderboard/
23
+ └── new_submission/
24
+ ├── results_and_parameters.csv
25
+ ├── additional_info.json
26
+ ```
27
+
28
+ ### 1.2. Add Results and Parameters Details
29
+ Add a CSV file (`results_and_parameters.csv`) with the columns below. Please note that if terratorch-iterate is used for experiments, this table may be created automatically upon completion of an experiment. Please see the `examples/results_and_parameters.csv` for an example.
30
+ - `backbone`: backbone used for experiment, (e.g. Prithvi-EO-V2 600M)
31
+ - `dataset`: some or all of the GEO-bench datasets. Please see Info page to learn more.
32
+ - `Metric`: the type of metric used for evaluation. Depending on the dataset, this may be one of the following: `Overall_Accuracy`, `Multilabel_F1_Score`, `Multiclass_Jaccard_Index`
33
+ - `experiment_name`: if terratorch-iterate used, this will the experiment_name used in mlflow. Otherwise, a unique name may be used for all results relating to a single backbone
34
+ - `batch_size_selection`: denotes whether the batch size was fixed during hyperparameter optimization. May be `fixed` or `optimized`
35
+ - `early_stop_patience`: early stopping patience using for trainer
36
+ - `n_trials`: number of trials used for hyperparameter optimization
37
+ - `Seed`: random seed used for repeated experiment. At least 5 random seeds must be used for each backbone
38
+ - `batch_size`: batch size used for repeated experiments for each backbone/dataset combination.
39
+ - `weight_decay`: weight decay experiments for each backbone/dataset combination.
40
+ - `lr`: learning rate used for repeated experiments for each backbone/dataset combination. Obtained from hyperparameter optimization (HPO)
41
+ - `test metric`: metric obtained from running backbone on the dataset during repeated experiment. Please see Info page to learn more.
42
+
43
+
44
+ ### 1.3. Add Additional Information
45
+ Create a JSON file (`additional_info.json`) with information about your submission and any new models that will be included.
46
+ The JSON file MUST have the same file name and contain the same keys as the `examples/additional_info.json` file.
47
+
48
+
49
+ ### 1.4. Submit PR
50
+
51
+ - Fork the repository
52
+ - Add your results following the structure above and in the PR comments add more details about your submission
53
+ - Create a pull request to main
54
+
55
+
56
+ ## 2. Benchmarking with Terratorch-Iterate
57
+ The [TerraTorch-Iterate](https://github.com/IBM/terratorch-iterate) library, based on [TerraTorch](https://github.com/IBM/terratorch), leverages MLFlow for experiment logging, optuna for hyperparameter optimization and ray for parallelization. It includes functionality to easily perform both hyperparameter tuning and re-repeated experiments in the manner prescribed by the GEO-Bench protocol. The `summarize` feature of `TerraTorch-Iterate` can be used to automatically create a `results_and_parameters.csv` file for submission, once benchmarking is complete.
58
+
59
+ ### 2.1 Installation
60
+ Please see [TerraTorch-Iterate](https://github.com/IBM/terratorch-iterate) for installation instructions
61
+
62
+ ### 2.2 Running benchmark experiments
63
+ **On existing models**: To run experiments on an existing model, a custom config file specifying the model and dataset parameters should be prepared. To compare performance of multiple models, define a config file with unique experiment name for each model being comapred. Please see the `examples` folder for sample config files. Each config file (experiment) can then be executed with the following command:
64
+
65
+ ```
66
+ terratorch iterate --hpo --repeat --config <config-file>
67
+ ```
68
+
69
+ **On new models**: New models can be evaluated by first onboarding them to the [TerraTorch](https://github.com/IBM/terratorch/) library. Once onboarded, benchmarking may be conducted as outlined above.
70
+
71
+
72
+ ### 2.3 Summarizing and plotting results
73
+ **Extract results and parameters**: The command below can be used to extract results and hyperparameters file for submission to the lederboard. Please see details at the following link: https://github.com/terrastackai/iterate?tab=readme-ov-file#summarizing-results.
74
+ ```
75
+ terratorch iterate --summarize --config <summarize-config-file>
76
+ ```
app.py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import re
4
+ import streamlit as st
5
+ import pandas as pd
6
+ import numpy as np
7
+ from urllib.parse import quote
8
+ from pathlib import Path
9
+ import re
10
+ import html
11
+ import pickle
12
+ from typing import Dict, Any, Tuple
13
+ from scipy.stats import sem
14
+ from utils.constants import (DATASETS, DIGITS_FOR_VALUES, DIGITS_FOR_ERRORS,
15
+ DATASET_INFO, DIMENSIONS, RESULTS_DIR,
16
+ DIMENSION_INFO)
17
+
18
+
19
+ def sanitize_model_name(model_name):
20
+ # Only allow alphanumeric chars, hyphen, underscore
21
+ if model_name.startswith('.'):
22
+ raise ValueError("model name cannot start with a dot")
23
+
24
+ if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", model_name):
25
+ raise ValueError("Invalid model name format")
26
+ return model_name
27
+
28
+
29
+ def safe_path_join(*parts):
30
+ # Ensure we stay within results directory
31
+ base = Path("results").resolve()
32
+ try:
33
+ path = base.joinpath(*parts).resolve()
34
+ if not str(path).startswith(str(base)):
35
+ raise ValueError("Path traversal detected")
36
+ return path
37
+ except Exception:
38
+ raise ValueError("Invalid path")
39
+
40
+
41
+ def sanitize_column_name(col: str) -> str:
42
+ """Sanitize column names for HTML display"""
43
+ col= str(col)
44
+ is_result_column = [True if item in col else False for item in ["IQM", "Mean"]]
45
+ col = col.replace("_", " ") if any(is_result_column) else col.replace("_", " ").title()
46
+ return html.escape(col)
47
+
48
+
49
+
50
+ def sanitize_cell_value(value: Any) -> str:
51
+ """Sanitize cell values for HTML display"""
52
+ if value == "nan ± nan":
53
+ value = "NA"
54
+ if isinstance(value, (int, float)):
55
+ output = str(value)
56
+ else:
57
+ output = html.escape(str(value))
58
+ return output
59
+
60
+
61
+ def heat_rgb01(t: float, max_val: int) -> Tuple[int, int, int]:
62
+ """Map t in [0,1] to white → IBM blue (#0F62FE)."""
63
+ min_val = 0
64
+ t = max(min_val, min(1, (t/max_val)))
65
+ # t = (t - min_val)/max_val
66
+ # White RGB
67
+ wr, wg, wb = 255, 255, 255
68
+ # IBM blue RGB
69
+ br, bg, bb = 15, 98, 254
70
+ r = int(round(wr + (br - wr) * t))
71
+ g = int(round(wg + (bg - wg) * t))
72
+ b = int(round(wb + (bb - wb) * t))
73
+ return r, g, b
74
+
75
+ def rgb_to_css(rgb: Tuple[int, int, int]) -> str:
76
+ r, g, b = rgb
77
+ return f"rgb({r}, {g}, {b})"
78
+
79
+ def readable_text_color(rgb: Tuple[int, int, int]) -> str:
80
+ """Pick text color (#222 or white) based on perceived luminance."""
81
+ r, g, b = rgb
82
+ y = 0.2126 * r + 0.7152 * g + 0.0722 * b
83
+ return "#222222" if y > 160 else "#ffffff"
84
+
85
+
86
+ def create_html_results_table(df, df_err, rank_table, display_rank=False):
87
+ html = '''
88
+ <style>
89
+ table {
90
+ width: 100%;
91
+ border-collapse: collapse;
92
+ }
93
+ th, td {
94
+ border: 1px solid #ddd;
95
+ padding: 8px;
96
+ text-align: center;
97
+ }
98
+ th {
99
+ font-weight: bold;
100
+ }
101
+ .table-container {
102
+ padding-bottom: 20px;
103
+ }
104
+ </style>
105
+ '''
106
+ html += '<div class="table-container">'
107
+ html += '<table>'
108
+ html += '<thead><tr>'
109
+
110
+ rank_index = list(range(1, df.shape[0]+1))
111
+ df.insert(loc=0, column='rank', value=rank_index)
112
+
113
+ columns = list(df.columns)
114
+ columns = [column for column in df.columns if column != "index"]
115
+ for column in columns:
116
+ html += f'<th>{sanitize_column_name(column)}</th>'
117
+ html += '</tr></thead>'
118
+ html += '<tbody>'
119
+
120
+ for (_, row), (_, row_err), (_, rank_row) in zip(df.iterrows(), df_err.iterrows(), rank_table.iterrows()):
121
+ html += '<tr>'
122
+ for col in columns:
123
+ #if column == "index": continue
124
+ if col == "Model":
125
+ html += f'<td>{row[col]}</td>'
126
+ else:
127
+ if col in row_err:
128
+ if row[col] != row_err[col]:
129
+ rgb = heat_rgb01(rank_row[col], rank_index[-1])
130
+ bg = rgb_to_css(rgb)
131
+ fg = readable_text_color(rgb)
132
+ if display_rank:
133
+ display_val = row[col] if np.isnan(row[col]) else int(rank_row[col])
134
+ new_val = f'<td style="background-color:{bg};color:{fg}">{sanitize_cell_value(display_val)}</td>'
135
+ else:
136
+ new_val = f'<td style="background-color:{bg};color:{fg}">{sanitize_cell_value(row[col])} ± {sanitize_cell_value(row_err[col])} </td>'
137
+ html += new_val
138
+ else:
139
+ html += f'<td>{sanitize_cell_value(row[col])}</td>'
140
+ else:
141
+ html += f'<td>{sanitize_cell_value(row[col])}</td>'
142
+
143
+ html += '</tr>'
144
+ html += '</tbody></table>'
145
+ html += '</div>'
146
+ return html
147
+
148
+ def create_html_table_info(df):
149
+ #create html table
150
+ html = '''
151
+ <style>
152
+ table {
153
+ width: 100%;
154
+ border-collapse: collapse;
155
+ }
156
+ th, td {
157
+ border: 1px solid #ddd;
158
+ padding: 8px;
159
+ text-align: center;
160
+ }
161
+ th {
162
+ font-weight: bold;
163
+ }
164
+ .table-container {
165
+ padding-bottom: 20px;
166
+ }
167
+ </style>
168
+ '''
169
+ html += '<div class="table-container">'
170
+ html += '<table>'
171
+ html += '<thead><tr>'
172
+ for column in df.columns:
173
+ html += f'<th>{sanitize_column_name(column)}</th>'
174
+ html += '</tr></thead>'
175
+ html += '<tbody>'
176
+
177
+ for (_, row) in df.iterrows():
178
+ html += '<tr>'
179
+ for column in df.columns:
180
+ if column == "Citation":
181
+ html += f'<td>{row[column]}</td>'
182
+ else:
183
+ html += f'<td>{sanitize_cell_value(row[column])}</td>'
184
+ html += '</tr>'
185
+ html += '</tbody></table>'
186
+ html += '</div>'
187
+ return html
188
+
189
+
190
+ def check_sanity(model_name):
191
+ try:
192
+ safe_model = sanitize_model_name(model_name)
193
+ for benchmark in DATASETS:
194
+ file_path = safe_path_join(safe_model, f"{benchmark.lower()}.json")
195
+ if not file_path.is_file():
196
+ continue
197
+ original_count = 0
198
+ with open(file_path) as f:
199
+ results = json.load(f)
200
+ for result in results:
201
+ if result["original_or_reproduced"] == "Original":
202
+ original_count += 1
203
+ if original_count != 1:
204
+ return False
205
+ return True
206
+ except ValueError:
207
+ return False
208
+
209
+
210
+ def make_hyperlink_datasets(url: str ,
211
+ url_name: str,
212
+ root: str = "") -> str:
213
+ try:
214
+ if len(url) == 0:
215
+ return url_name
216
+ full_url = f"{root}{url}"
217
+ return f'<a href="{html.escape(full_url)}" target="_blank">{html.escape(url_name)}</a>'
218
+ except ValueError:
219
+ return ""
220
+
221
+
222
+
223
+ def filter_with_user_selections(unique_key: str,
224
+ iqm_column_name: str,
225
+ table = pd.DataFrame,
226
+ table_err = pd.DataFrame
227
+ ) -> tuple[pd.DataFrame, pd.DataFrame]:
228
+
229
+ table.reset_index(inplace=True)
230
+ table_err.reset_index(inplace=True)
231
+ #filter best results per model if selected
232
+ view_best_per_model = st.radio(
233
+ "Select all results or best results",
234
+ ["best results per model", "all results"],
235
+ index=0,
236
+ key=unique_key,
237
+ horizontal=True
238
+ )
239
+ if view_best_per_model == "best results per model":
240
+ table[iqm_column_name] = pd.to_numeric(table[iqm_column_name])
241
+ # table = table.loc[table.groupby('Model')[iqm_column_name].transform('idxmax'),:]
242
+ imax = table.groupby('Model')[iqm_column_name].idxmax(skipna=True)
243
+ imax =imax.to_frame().reset_index()
244
+ imax = [int(table[table["Model"] == row["Model"]].index[0]) if np.isnan(row[iqm_column_name]) else row[iqm_column_name] for i, row in imax.iterrows()]
245
+ table = table.loc[imax]
246
+ table = table.drop_duplicates(['Model'])
247
+
248
+ #filter by search bars
249
+ col1, col2 = st.columns(2)
250
+ with col1:
251
+ search_models_query = st.text_input(f"Search by model", "", key=f"search_{unique_key}_models")
252
+ with col2:
253
+ search_submission_query = st.text_input(f"Search by submission", "", key=f"search_{unique_key}_submission")
254
+ # with col3:
255
+ # search_settings_query = st.text_input(f"Search by settings", "", key=f"search_{unique_key}_settings")
256
+ if search_models_query:
257
+ table = table[table['Model'].str.contains(search_models_query, case=False)]
258
+ if search_submission_query:
259
+ table = table[table['submission'].str.contains(search_submission_query, case=False)]
260
+ # if search_settings_query:
261
+ # table = table[table['Config Settings'].str.contains(search_settings_query, case=False)]
262
+
263
+ # Sort values
264
+ table = table.sort_values(by=iqm_column_name, ascending=False)
265
+ table_err = table_err.loc[table.index]
266
+ table = table.drop(["index"], errors='ignore')
267
+ table_err = table_err.drop(["index"], errors='ignore')
268
+ return table, table_err
269
+
270
+
271
+
272
+ def get_rank(df):
273
+ columns_to_rank = DATASETS + list(DIMENSIONS.keys())
274
+ df_rank = df.copy()
275
+ for col in df.columns:
276
+ if col in columns_to_rank:
277
+ df_rank[col] = df[col].rank(method='max', na_option='bottom', ascending=False)
278
+ return df_rank
279
+
280
+
281
+ def create_overall_performance_tab(
282
+ overall_performance_tables,
283
+ iqm_column_name='Core'
284
+ ):
285
+ # Main Leaderboard tab
286
+ st.header("Capabilities Ranking")
287
+
288
+ #show full finetuning or frozen results if selected
289
+ view_frozen_or_full_ft = st.radio(
290
+ "Select full finetuning or frozen values",
291
+ ["fully finetuned backbone", "frozen backbone"],
292
+ index=0,
293
+ key="overall_ft_or_frozen",
294
+ horizontal=True
295
+ )
296
+
297
+ # overall_performance_tables = overall_performance_tables["full_ft"].copy()
298
+ if view_frozen_or_full_ft == "fully finetuned backbone":
299
+ overall_performance_tables = overall_performance_tables["full_ft"].copy()
300
+ else:
301
+ overall_performance_tables = overall_performance_tables["frozen"].copy()
302
+ overall_table = overall_performance_tables["normalized"].copy()
303
+ overall_table_err = overall_performance_tables["normalized_err"].copy()
304
+
305
+ # filter with user selections
306
+ overall_table, overall_table_err = filter_with_user_selections(unique_key="overall_all_or_best",
307
+ iqm_column_name = iqm_column_name,
308
+ table = overall_table,
309
+ table_err = overall_table_err
310
+ )
311
+ if not overall_table.empty:
312
+ overall_table["submission"] = overall_table["submission"].str.split('-', expand = True)[0]
313
+ overall_table_err["submission"] = overall_table_err["submission"].str.split('-', expand = True)[0]
314
+
315
+
316
+ #convert to rank
317
+ rank_table = get_rank(overall_table)
318
+
319
+ # Export the DataFrame to CSV
320
+ if st.button("Export to CSV", key=f"overall_performance_export_main"):
321
+ csv_data = overall_table.to_csv(index=False)
322
+ st.download_button(
323
+ label="Download CSV",
324
+ data=csv_data,
325
+ file_name=f"overall_performance_leaderboard.csv",
326
+ key="download-csv",
327
+ help="Click to download the CSV file",
328
+ )
329
+ st.markdown("Lower rank is better (1 = best). Colors are scaled per column. ")
330
+
331
+ html_table = create_html_results_table(overall_table, overall_table_err, rank_table, display_rank=True)
332
+ st.markdown(html_table, unsafe_allow_html=True)
333
+
334
+
335
+
336
+ def create_dimension_performance_tab(
337
+ performance_by_dimension_tables
338
+ ):
339
+ # Dimension tab
340
+ st.header("Performance By Capability")
341
+
342
+ #show full finetuning or frozen results if selected
343
+ view_frozen_or_full_ft = st.radio(
344
+ "Select full finetuning or frozen values",
345
+ ["fully finetuned backbone", "frozen backbone"],
346
+ index=0,
347
+ key="dimension_ft_or_frozen",
348
+ horizontal=True
349
+ )
350
+ if view_frozen_or_full_ft == "fully finetuned backbone":
351
+ performance_by_dimension_tables = performance_by_dimension_tables["full_ft"].copy()
352
+ else:
353
+ performance_by_dimension_tables = performance_by_dimension_tables["frozen"].copy()
354
+
355
+ #add drop down
356
+ dimension_drop_down = st.selectbox('Select dimension to view',
357
+ ([f"{key} - {value}" for key, value in DIMENSION_INFO.items()]))
358
+ dimension_drop_down = dimension_drop_down.split(" - ")[0]
359
+
360
+ dimension_table = performance_by_dimension_tables["normalized"][dimension_drop_down].copy()
361
+ dimension_table_err = performance_by_dimension_tables["normalized_err"][f"{dimension_drop_down}_err"].copy()
362
+ iqm_column_name = f'{dimension_drop_down}'
363
+
364
+ # filter with search bars
365
+ dimension_table, dimension_table_err = filter_with_user_selections(unique_key = "dimension_all_or_best",
366
+ iqm_column_name = iqm_column_name,
367
+ table = dimension_table,
368
+ table_err = dimension_table_err)
369
+ if not dimension_table.empty:
370
+ dimension_table["submission"] = dimension_table["submission"].str.split('-', expand = True)[0]
371
+ dimension_table_err["submission"] = dimension_table_err["submission"].str.split('-', expand = True)[0]
372
+
373
+ #convert to rank
374
+ rank_table = get_rank(dimension_table)
375
+
376
+ #performance_by_dimension_tables[dimension_drop_down]['Model'] = performance_by_dimension_tables[dimension_drop_down]['Model'].apply(make_hyperlink)
377
+ html_table = create_html_results_table(dimension_table, dimension_table_err, rank_table, display_rank=False)
378
+ st.markdown(html_table, unsafe_allow_html=True)
379
+
380
+
381
+ def create_datasets_tabs(all_datasets_tables: dict
382
+ ):
383
+ datasets_tabs = st.tabs([dataset.replace("_", " ") for dataset in DATASETS])
384
+ for i, dataset in enumerate(DATASETS):
385
+ with datasets_tabs[i]:
386
+ dataset_name = dataset.replace("_", " ").title()
387
+ dataset_desc = DATASET_INFO["Description"][DATASET_INFO["Dataset"].index(dataset_name)]
388
+ st.header(dataset.replace("_", " ").title())
389
+ st.markdown(dataset_desc)
390
+
391
+ #show full finetuning or frozen results if selected
392
+ view_frozen_or_full_ft = st.radio(
393
+ "Select full finetuning or frozen values",
394
+ ["fully finetuned backbone", "frozen backbone"],
395
+ index=0,
396
+ key=f"{dataset_name}_ft_or_frozen",
397
+ horizontal=True
398
+ )
399
+ if view_frozen_or_full_ft == "fully finetuned backbone":
400
+ datasets_tables = all_datasets_tables["full_ft"].copy()
401
+ else:
402
+ datasets_tables = all_datasets_tables["frozen"].copy()
403
+
404
+ #show raw or normalized results if selected
405
+ view_raw_or_normalized_dataset = st.radio(
406
+ "Select raw or normalized values",
407
+ ["normalized values (with IQM)", "raw values (with Mean)"],
408
+ index=0,
409
+ key=f"{dataset}_raw_or_normalized",
410
+ horizontal=True
411
+ )
412
+ dataset_table = datasets_tables["normalized"][dataset].copy()
413
+ dataset_table_err = datasets_tables["normalized_err"][dataset].copy()
414
+ # iqm_column_name = "IQM"
415
+ if view_raw_or_normalized_dataset == "normalized values (with IQM)":
416
+ dataset_table = datasets_tables["normalized"][dataset].copy()
417
+ dataset_table_err = datasets_tables["normalized_err"][dataset].copy()
418
+ iqm_column_name = "IQM"
419
+ else:
420
+ dataset_table = datasets_tables["raw"][dataset].copy()
421
+ dataset_table_err = datasets_tables["raw_err"][dataset].copy()
422
+ iqm_column_name = "Mean"
423
+
424
+ # filter with search bars
425
+ dataset_table, dataset_table_err = filter_with_user_selections(unique_key = dataset,
426
+ iqm_column_name = iqm_column_name,
427
+ table = dataset_table,
428
+ table_err = dataset_table_err
429
+ )
430
+ if not dataset_table.empty:
431
+ dataset_table["submission"] = dataset_table["submission"].str.split('-', expand = True)[0]
432
+ dataset_table_err["submission"] = dataset_table_err["submission"].str.split('-', expand = True)[0]
433
+
434
+ #convert to rank
435
+ rank_table = get_rank(dataset_table)
436
+
437
+ #create html table
438
+ html_table = create_html_results_table(dataset_table, dataset_table_err, rank_table, display_rank=False)
439
+ st.markdown(html_table, unsafe_allow_html=True)
440
+
441
+
442
+
443
+ def create_info_tab(submission_info_table):
444
+ # tabs = st.tabs(["Dataset Info", "Capability Info", "Submission Info"])
445
+ tabs = st.tabs([ "Capability Info"])
446
+
447
+ # with tabs[0]:
448
+ # st.header("Dataset Info")
449
+
450
+ # dataset_table = pd.DataFrame(DATASET_INFO)
451
+ # citation_hyperlinks = [make_hyperlink_datasets(url = row.Hyperlinks,
452
+ # url_name = row.Citation) for _, row in dataset_table.iterrows()]
453
+ # dataset_table.drop(columns=['Hyperlinks', 'Citation'], inplace = True)
454
+ # dataset_table["Citation"] = citation_hyperlinks
455
+ # dataset_table = create_html_table_info(dataset_table)
456
+ # st.markdown(dataset_table, unsafe_allow_html=True)
457
+
458
+ with tabs[0]:
459
+ st.header("Capability Info")
460
+ dims = []
461
+ datasets = []
462
+ details = []
463
+ for dimension, info in DIMENSION_INFO.items():
464
+ dims.append(dimension)
465
+ datasets.append(", ".join(DIMENSIONS[dimension]))
466
+ details.append(info)
467
+ dim_table = pd.DataFrame({
468
+ "Capability": dims,
469
+ "Details": details,
470
+ "Datasets": datasets,
471
+ })
472
+ dim_table = create_html_table_info(dim_table)
473
+ st.markdown(dim_table, unsafe_allow_html=True)
474
+
475
+ # with tabs[2]:
476
+ # st.header("Submission Info")
477
+ # dim_table = create_html_table_info(submission_info_table)
478
+ # st.markdown(dim_table, unsafe_allow_html=True)
479
+
480
+
481
+
482
+
483
+
484
+ def main():
485
+ st.set_page_config(page_title="GeoBench Leaderboard", layout="wide", initial_sidebar_state="expanded")
486
+ st.markdown("""
487
+ <head>
488
+ <meta http-equiv="Content-Security-Policy"
489
+ content="default-src 'self' https://huggingface.co;
490
+ script-src 'self' 'unsafe-inline';
491
+ style-src 'self' 'unsafe-inline';
492
+ img-src 'self' data: https:;
493
+ frame-ancestors 'none';">
494
+ <meta http-equiv="X-Frame-Options" content="DENY">
495
+ <meta http-equiv="X-Content-Type-Options" content="nosniff">
496
+ <meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin">
497
+ </head>
498
+ """, unsafe_allow_html=True)
499
+
500
+ compiled_results = pd.read_pickle(f'{RESULTS_DIR}/compiled.pkl')
501
+ overall_performance_tables = compiled_results["overall_performance_tables"]
502
+ performance_by_dimension_tables = compiled_results["performance_by_dimension_tables"]
503
+ datasets_tables = compiled_results["datasets_tables"]
504
+ submission_info_table = compiled_results["submission_info_table"]
505
+ del compiled_results
506
+
507
+ #create header
508
+ st.title("🏆 GEO-Bench Leaderboard")
509
+ st.markdown("Benchmarking Geospatial Foundation Models")
510
+ # content = create_yall()
511
+ tabs = st.tabs(["🏆 Main Leaderboard", "Capabilities", "Datasets", "Info", "📝 How to Submit"])
512
+
513
+ with tabs[0]:
514
+ create_overall_performance_tab(overall_performance_tables=overall_performance_tables)
515
+
516
+ with tabs[1]:
517
+ create_dimension_performance_tab(performance_by_dimension_tables=performance_by_dimension_tables)
518
+
519
+ with tabs[2]:
520
+ # Datasets tabs
521
+ #create individual dataset pages
522
+ create_datasets_tabs(all_datasets_tables=datasets_tables)
523
+
524
+ with tabs[3]:
525
+ # Info tab
526
+ create_info_tab(submission_info_table)
527
+
528
+ with tabs[-1]:
529
+ #About page
530
+ st.header("How to Submit")
531
+ with open("utils/about_page.txt") as f:
532
+ about_page = f.read()
533
+ st.markdown(about_page)
534
+ comment = """
535
+
536
+ with tabs[2]:
537
+ # Models tab
538
+ st.markdown("Models used for benchmarking")
539
+ model_tabs = st.tabs(all_model_names)
540
+ #create individual benchmark pages
541
+ #create_models_tabs(all_submission_results=all_submission_results,
542
+ # model_tabs=model_tabs,
543
+ # all_model_names=all_model_names
544
+ # )
545
+ with tabs[3]:
546
+ # Submissions tab
547
+ st.markdown("Experiments submitted to benchmark benchmarking")
548
+ submissions_tabs = st.tabs(all_submissions)
549
+ #create individual benchmark pages
550
+ #create_submissions_tabs(all_submission_results=all_submission_results,
551
+ # model_tabs=submissions_tabs,
552
+ # all_submissions=all_submissions
553
+ # )
554
+
555
+ """
556
+
557
+
558
+ if __name__ == "__main__":
559
+ main()
examples/.DS_Store ADDED
Binary file (6.15 kB). View file
 
examples/additional_info.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+
3
+ "Paper Link": "links to published paper or preprint if available. Please use N/A if not available",
4
+ "Code Repository Link ": "links to any papers that you wish to be included with your submission. Please use N/A if not available",
5
+ "License": "License information about your model, e.g. MIT. Please use N/A if not available",
6
+ "Number of HPO trials": "Number of trials for hyperparameter optimiztion of each model/dataset combination",
7
+ "Additional information about submission": "Any information about how the experiments were conducted",
8
+ "Comments on new models in submission": "Describe any new models you have included which were not previously part of the leaderboard. You may include information such as model architecture, pre-training datasets used, number of training steps, hardware used, training time",
9
+ "New model info":
10
+ [
11
+ {
12
+ "model_display_name": "Name to be used in leaderboard table for any new models in your submission",
13
+ "model_size": "number of trainable parameters in model (e.g. 300M)",
14
+ "unique_backbone_key": "backbone used in experiments to identify the model. Will be used to identify the model in the results table (csv file)"
15
+ }
16
+ ]
17
+ }
examples/results_and_parameters.csv ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset,Metric,experiment_name,partition name,backbone,decoder,batch_size_selection,early_stop_patience,n_trials,Seed,data_percentages,batch_size,weight_decay,lr,test metric
2
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4074,100%,8,0.376311714631646,8.49502710213644e-05,0.6672176122665405
3
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1897,100%,8,0.376311714631646,8.49502710213644e-05,0.6660189628601074
4
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1270,100%,8,0.376311714631646,8.49502710213644e-05,0.6640214920043945
5
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3768,100%,8,0.376311714631646,8.49502710213644e-05,0.6960753202438354
6
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3401,100%,8,0.376311714631646,8.49502710213644e-05,0.6873977184295654
7
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3224,100%,8,0.376311714631646,8.49502710213644e-05,0.6798655986785889
8
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2874,100%,8,0.376311714631646,8.49502710213644e-05,0.651594340801239
9
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3985,100%,8,0.376311714631646,8.49502710213644e-05,0.6867294311523438
10
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4143,100%,8,0.376311714631646,8.49502710213644e-05,0.665279746055603
11
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,52,100%,8,0.376311714631646,8.49502710213644e-05,0.6851502656936646
12
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1448,100%,32,0.0028238171171985,0.0009324538851647,0.3234341442584991
13
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,584,100%,32,0.0028238171171985,0.0009324538851647,0.3291504979133606
14
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1031,100%,32,0.0028238171171985,0.0009324538851647,0.3228558301925659
15
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2751,100%,32,0.0028238171171985,0.0009324538851647,0.3260976672172546
16
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3898,100%,32,0.0028238171171985,0.0009324538851647,0.3153356313705444
17
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1970,100%,32,0.0028238171171985,0.0009324538851647,0.3248571753501892
18
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,96,100%,32,0.0028238171171985,0.0009324538851647,0.3324618935585022
19
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2531,100%,32,0.0028238171171985,0.0009324538851647,0.3320326507091522
20
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2268,100%,32,0.0028238171171985,0.0009324538851647,0.315716028213501
21
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3222,100%,32,0.0028238171171985,0.0009324538851647,0.3328837752342224
22
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,199,100%,8,0.0635019082538137,0.0001077432627767,0.933402419090271
23
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4121,100%,8,0.0635019082538137,0.0001077432627767,0.9397921562194824
24
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2249,100%,8,0.0635019082538137,0.0001077432627767,0.9408209323883056
25
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3809,100%,8,0.0635019082538137,0.0001077432627767,0.938472330570221
26
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,85,100%,8,0.0635019082538137,0.0001077432627767,0.939550518989563
27
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,780,100%,8,0.0635019082538137,0.0001077432627767,0.939792811870575
28
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1094,100%,8,0.0635019082538137,0.0001077432627767,0.9387277364730836
29
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2316,100%,8,0.0635019082538137,0.0001077432627767,0.938027560710907
30
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2244,100%,8,0.0635019082538137,0.0001077432627767,0.935537576675415
31
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1350,100%,8,0.0635019082538137,0.0001077432627767,0.9421088695526124
32
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1511,100%,8,0.1162518746995334,0.0009977774835077,0.9161623120307922
33
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2020,100%,8,0.1162518746995334,0.0009977774835077,0.7651582956314087
34
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2860,100%,8,0.1162518746995334,0.0009977774835077,0.7665423154830933
35
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3835,100%,8,0.1162518746995334,0.0009977774835077,0.9021945595741272
36
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1192,100%,8,0.1162518746995334,0.0009977774835077,0.9094558954238892
37
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2281,100%,8,0.1162518746995334,0.0009977774835077,0.890521228313446
38
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1968,100%,8,0.1162518746995334,0.0009977774835077,0.7655184268951416
39
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,218,100%,8,0.1162518746995334,0.0009977774835077,0.7658498883247375
40
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2115,100%,8,0.1162518746995334,0.0009977774835077,0.8599324226379395
41
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3423,100%,8,0.1162518746995334,0.0009977774835077,0.9091439843177797
42
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2509,100%,8,0.0983399202983907,0.0009153563094797,0.5734111666679382
43
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3987,100%,8,0.0983399202983907,0.0009153563094797,0.559952974319458
44
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3921,100%,8,0.0983399202983907,0.0009153563094797,0.5713885426521301
45
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,47,100%,8,0.0983399202983907,0.0009153563094797,0.5674113631248474
46
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,585,100%,8,0.0983399202983907,0.0009153563094797,0.5748375654220581
47
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2217,100%,8,0.0983399202983907,0.0009153563094797,0.570099949836731
48
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,288,100%,8,0.0983399202983907,0.0009153563094797,0.5726335048675537
49
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4135,100%,8,0.0983399202983907,0.0009153563094797,0.5661790370941162
50
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3220,100%,8,0.0983399202983907,0.0009153563094797,0.5695707201957703
51
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1504,100%,8,0.0983399202983907,0.0009153563094797,0.5611818432807922
52
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,515,100%,16,0.2992355570741097,0.0005669541997516,0.8232710361480713
53
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1577,100%,16,0.2992355570741097,0.0005669541997516,0.8244178295135498
54
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2509,100%,16,0.2992355570741097,0.0005669541997516,0.8250547647476196
55
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1281,100%,16,0.2992355570741097,0.0005669541997516,0.8269679546356201
56
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2456,100%,16,0.2992355570741097,0.0005669541997516,0.8278542160987854
57
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2575,100%,16,0.2992355570741097,0.0005669541997516,0.8266293406486511
58
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4495,100%,16,0.2992355570741097,0.0005669541997516,0.8163466453552246
59
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3347,100%,16,0.2992355570741097,0.0005669541997516,0.8090845346450806
60
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1611,100%,16,0.2992355570741097,0.0005669541997516,0.8216108083724976
61
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4208,100%,16,0.2992355570741097,0.0005669541997516,0.8205042481422424
62
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,799,100%,32,0.0845698013691995,7.095358602186485e-05,0.7135563492774963
63
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,339,100%,32,0.0845698013691995,7.095358602186485e-05,0.7104905843734741
64
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4739,100%,32,0.0845698013691995,7.095358602186485e-05,0.688521146774292
65
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4036,100%,32,0.0845698013691995,7.095358602186485e-05,0.7167086601257324
66
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3312,100%,32,0.0845698013691995,7.095358602186485e-05,0.715383768081665
67
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2740,100%,32,0.0845698013691995,7.095358602186485e-05,0.7025712728500366
68
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3843,100%,32,0.0845698013691995,7.095358602186485e-05,0.6929353475570679
69
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4613,100%,32,0.0845698013691995,7.095358602186485e-05,0.7135555744171143
70
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2118,100%,32,0.0845698013691995,7.095358602186485e-05,0.7066311836242676
71
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1998,100%,32,0.0845698013691995,7.095358602186485e-05,0.7069718241691589
72
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1273,100%,32,0.3169093481136426,0.0002803700277342,0.331969290971756
73
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4369,100%,32,0.3169093481136426,0.0002803700277342,0.3571399450302124
74
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4295,100%,32,0.3169093481136426,0.0002803700277342,0.3499228954315185
75
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3719,100%,32,0.3169093481136426,0.0002803700277342,0.3375613093376159
76
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4980,100%,32,0.3169093481136426,0.0002803700277342,0.3444221615791321
77
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3926,100%,32,0.3169093481136426,0.0002803700277342,0.3480183482170105
78
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,523,100%,32,0.3169093481136426,0.0002803700277342,0.3338068127632141
79
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3132,100%,32,0.3169093481136426,0.0002803700277342,0.3421605825424194
80
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,268,100%,32,0.3169093481136426,0.0002803700277342,0.3521450757980346
81
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1294,100%,32,0.3169093481136426,0.0002803700277342,0.3380949795246124
82
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2853,100%,32,0.2806807709516379,0.0001561962879473,0.9402685165405272
83
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,921,100%,32,0.2806807709516379,0.0001561962879473,0.935638189315796
84
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2885,100%,32,0.2806807709516379,0.0001561962879473,0.9274752140045166
85
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1833,100%,32,0.2806807709516379,0.0001561962879473,0.9409592151641846
86
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2434,100%,32,0.2806807709516379,0.0001561962879473,0.942594826221466
87
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4523,100%,32,0.2806807709516379,0.0001561962879473,0.9272408485412598
88
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1074,100%,32,0.2806807709516379,0.0001561962879473,0.9365390539169312
89
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2695,100%,32,0.2806807709516379,0.0001561962879473,0.9388547539711
90
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3339,100%,32,0.2806807709516379,0.0001561962879473,0.9340709447860718
91
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,778,100%,32,0.2806807709516379,0.0001561962879473,0.9414107799530028
92
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,391,100%,8,0.1872029616850694,0.0001583623070717,0.8811582922935486
93
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,125,100%,8,0.1872029616850694,0.0001583623070717,0.7500208616256714
94
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1471,100%,8,0.1872029616850694,0.0001583623070717,0.7552796006202698
95
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,185,100%,8,0.1872029616850694,0.0001583623070717,0.7548510432243347
96
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3220,100%,8,0.1872029616850694,0.0001583623070717,0.8831520676612854
97
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1477,100%,8,0.1872029616850694,0.0001583623070717,0.7554706335067749
98
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,27,100%,8,0.1872029616850694,0.0001583623070717,0.8891997337341309
99
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3893,100%,8,0.1872029616850694,0.0001583623070717,0.7583714723587036
100
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3109,100%,8,0.1872029616850694,0.0001583623070717,0.74748694896698
101
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1561,100%,8,0.1872029616850694,0.0001583623070717,0.7510426640510559
102
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,339,100%,8,0.0958805157666471,0.0006669639988907,0.567497730255127
103
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1119,100%,8,0.0958805157666471,0.0006669639988907,0.5694387555122375
104
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1598,100%,8,0.0958805157666471,0.0006669639988907,0.5681214928627014
105
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,59,100%,8,0.0958805157666471,0.0006669639988907,0.5635424852371216
106
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,299,100%,8,0.0958805157666471,0.0006669639988907,0.5690293312072754
107
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3969,100%,8,0.0958805157666471,0.0006669639988907,0.5734402537345886
108
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1335,100%,8,0.0958805157666471,0.0006669639988907,0.5750075578689575
109
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1205,100%,8,0.0958805157666471,0.0006669639988907,0.5757657289505005
110
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1984,100%,8,0.0958805157666471,0.0006669639988907,0.5712120532989502
111
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1387,100%,8,0.0958805157666471,0.0006669639988907,0.5796757936477661
112
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2986,100%,32,0.2406274751665054,0.0007374796618441,0.8232717514038086
113
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3692,100%,32,0.2406274751665054,0.0007374796618441,0.8008925914764404
114
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2829,100%,32,0.2406274751665054,0.0007374796618441,0.8172112107276917
115
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3583,100%,32,0.2406274751665054,0.0007374796618441,0.8212674856185913
116
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4245,100%,32,0.2406274751665054,0.0007374796618441,0.8171231746673584
117
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4544,100%,32,0.2406274751665054,0.0007374796618441,0.8219597339630127
118
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1204,100%,32,0.2406274751665054,0.0007374796618441,0.8255108594894409
119
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,15,100%,32,0.2406274751665054,0.0007374796618441,0.8165488243103027
120
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4111,100%,32,0.2406274751665054,0.0007374796618441,0.8116637468338013
121
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2099,100%,32,0.2406274751665054,0.0007374796618441,0.7985596060752869
122
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4565,100%,32,0.0483818466583478,0.0009007718997571,0.9809809923171996
123
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4322,100%,32,0.0483818466583478,0.0009007718997571,0.9739739894866944
124
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4148,100%,32,0.0483818466583478,0.0009007718997571,0.9819819927215576
125
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,16,100%,32,0.0483818466583478,0.0009007718997571,0.977977991104126
126
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3799,100%,32,0.0483818466583478,0.0009007718997571,0.9679679870605468
127
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4370,100%,32,0.0483818466583478,0.0009007718997571,0.9719719886779784
128
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4217,100%,32,0.0483818466583478,0.0009007718997571,0.9739739894866944
129
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2748,100%,32,0.0483818466583478,0.0009007718997571,0.978978991508484
130
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4964,100%,32,0.0483818466583478,0.0009007718997571,0.9729729890823364
131
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,145,100%,32,0.0483818466583478,0.0009007718997571,0.9589589834213256
132
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1582,100%,16,0.1420142212351907,6.484318042499172e-05,0.517241358757019
133
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3140,100%,16,0.1420142212351907,6.484318042499172e-05,0.568965494632721
134
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1849,100%,16,0.1420142212351907,6.484318042499172e-05,0.5557809472084045
135
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1966,100%,16,0.1420142212351907,6.484318042499172e-05,0.5030425786972046
136
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3231,100%,16,0.1420142212351907,6.484318042499172e-05,0.5425963401794434
137
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2190,100%,16,0.1420142212351907,6.484318042499172e-05,0.5486815571784973
138
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4762,100%,16,0.1420142212351907,6.484318042499172e-05,0.5679513216018677
139
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3672,100%,16,0.1420142212351907,6.484318042499172e-05,0.5415821671485901
140
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1329,100%,16,0.1420142212351907,6.484318042499172e-05,0.5446247458457947
141
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1399,100%,16,0.1420142212351907,6.484318042499172e-05,0.5334685444831848
142
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3310,100%,32,0.0016925260317968,6.455143990010064e-05,0.9869869947433472
143
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,535,100%,32,0.0016925260317968,6.455143990010064e-05,0.9819819927215576
144
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,562,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
145
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1753,100%,32,0.0016925260317968,6.455143990010064e-05,0.9849849939346312
146
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2622,100%,32,0.0016925260317968,6.455143990010064e-05,0.9649649858474731
147
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,814,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
148
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,237,100%,32,0.0016925260317968,6.455143990010064e-05,0.9839839935302734
149
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1307,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
150
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4435,100%,32,0.0016925260317968,6.455143990010064e-05,0.9809809923171996
151
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4089,100%,32,0.0016925260317968,6.455143990010064e-05,0.9839839935302734
152
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4838,100%,32,0.2103480107442391,6.471079283583433e-05,0.6599027514457703
153
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,713,100%,32,0.2103480107442391,6.471079283583433e-05,0.6716534495353699
154
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4468,100%,32,0.2103480107442391,6.471079283583433e-05,0.6648851037025452
155
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,840,100%,32,0.2103480107442391,6.471079283583433e-05,0.6675868034362793
156
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1144,100%,32,0.2103480107442391,6.471079283583433e-05,0.6821687817573547
157
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1829,100%,32,0.2103480107442391,6.471079283583433e-05,0.6789093017578125
158
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2007,100%,32,0.2103480107442391,6.471079283583433e-05,0.6702918410301208
159
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2254,100%,32,0.2103480107442391,6.471079283583433e-05,0.6647154688835144
160
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,205,100%,32,0.2103480107442391,6.471079283583433e-05,0.6651250123977661
161
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,913,100%,32,0.2103480107442391,6.471079283583433e-05,0.6596580743789673
162
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3130,100%,32,0.290578170946364,8.388751435377213e-05,0.9739999771118164
163
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1220,100%,32,0.290578170946364,8.388751435377213e-05,0.9629999995231628
164
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1188,100%,32,0.290578170946364,8.388751435377213e-05,0.962000012397766
165
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2923,100%,32,0.290578170946364,8.388751435377213e-05,0.9700000286102296
166
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2033,100%,32,0.290578170946364,8.388751435377213e-05,0.968999981880188
167
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,445,100%,32,0.290578170946364,8.388751435377213e-05,0.972000002861023
168
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2729,100%,32,0.290578170946364,8.388751435377213e-05,0.9679999947547911
169
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3499,100%,32,0.290578170946364,8.388751435377213e-05,0.962000012397766
170
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1144,100%,32,0.290578170946364,8.388751435377213e-05,0.9679999947547911
171
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2902,100%,32,0.290578170946364,8.388751435377213e-05,0.9739999771118164
172
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,707,100%,16,0.3941167807260976,0.0002822095144255,0.4521651566028595
173
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3382,100%,16,0.3941167807260976,0.0002822095144255,0.4692849814891815
174
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4829,100%,16,0.3941167807260976,0.0002822095144255,0.448136955499649
175
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4496,100%,16,0.3941167807260976,0.0002822095144255,0.4360523521900177
176
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4976,100%,16,0.3941167807260976,0.0002822095144255,0.4189325273036957
177
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1421,100%,16,0.3941167807260976,0.0002822095144255,0.4269889295101166
178
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3807,100%,16,0.3941167807260976,0.0002822095144255,0.4390735030174255
179
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3103,100%,16,0.3941167807260976,0.0002822095144255,0.4491440057754516
180
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1716,100%,16,0.3941167807260976,0.0002822095144255,0.4471299052238464
181
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3421,100%,16,0.3941167807260976,0.0002822095144255,0.4290030300617218
182
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1006,100%,16,0.0233859235441379,0.0008743862145496,0.9689689874649048
183
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,855,100%,16,0.0233859235441379,0.0008743862145496,0.9759759902954102
184
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,274,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
185
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3967,100%,16,0.0233859235441379,0.0008743862145496,0.966966986656189
186
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1261,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
187
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3907,100%,16,0.0233859235441379,0.0008743862145496,0.977977991104126
188
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,507,100%,16,0.0233859235441379,0.0008743862145496,0.9699699878692628
189
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4890,100%,16,0.0233859235441379,0.0008743862145496,0.9739739894866944
190
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,821,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
191
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,897,100%,16,0.0233859235441379,0.0008743862145496,0.9759759902954102
192
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2709,100%,8,0.2143980952203471,7.678537962381587e-05,0.546653151512146
193
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4385,100%,8,0.2143980952203471,7.678537962381587e-05,0.523326575756073
194
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2334,100%,8,0.2143980952203471,7.678537962381587e-05,0.5537525415420532
195
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2296,100%,8,0.2143980952203471,7.678537962381587e-05,0.563894510269165
196
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2335,100%,8,0.2143980952203471,7.678537962381587e-05,0.540567934513092
197
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4220,100%,8,0.2143980952203471,7.678537962381587e-05,0.5567951202392578
198
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,600,100%,8,0.2143980952203471,7.678537962381587e-05,0.5415821671485901
199
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4085,100%,8,0.2143980952203471,7.678537962381587e-05,0.5081135630607605
200
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3605,100%,8,0.2143980952203471,7.678537962381587e-05,0.4898580014705658
201
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4851,100%,8,0.2143980952203471,7.678537962381587e-05,0.5578093528747559
202
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2466,100%,32,0.0241049339778712,0.0006317522129654,0.9809809923171996
203
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2541,100%,32,0.0241049339778712,0.0006317522129654,0.9829829931259156
204
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2246,100%,32,0.0241049339778712,0.0006317522129654,0.978978991508484
205
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,132,100%,32,0.0241049339778712,0.0006317522129654,0.9689689874649048
206
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1691,100%,32,0.0241049339778712,0.0006317522129654,0.9729729890823364
207
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1696,100%,32,0.0241049339778712,0.0006317522129654,0.9799799919128418
208
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2224,100%,32,0.0241049339778712,0.0006317522129654,0.9799799919128418
209
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4222,100%,32,0.0241049339778712,0.0006317522129654,0.9809809923171996
210
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1077,100%,32,0.0241049339778712,0.0006317522129654,0.9739739894866944
211
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3614,100%,32,0.0241049339778712,0.0006317522129654,0.95695698261261
212
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4838,100%,32,0.0006609967274643,0.0001244735178777,0.6715825200080872
213
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,713,100%,32,0.0006609967274643,0.0001244735178777,0.6624463200569153
214
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4468,100%,32,0.0006609967274643,0.0001244735178777,0.6741133332252502
215
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,840,100%,32,0.0006609967274643,0.0001244735178777,0.6756007671356201
216
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1144,100%,32,0.0006609967274643,0.0001244735178777,0.6727983355522156
217
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1829,100%,32,0.0006609967274643,0.0001244735178777,0.6618573069572449
218
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2007,100%,32,0.0006609967274643,0.0001244735178777,0.6743751168251038
219
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2254,100%,32,0.0006609967274643,0.0001244735178777,0.6706086993217468
220
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,205,100%,32,0.0006609967274643,0.0001244735178777,0.6765933632850647
221
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,913,100%,32,0.0006609967274643,0.0001244735178777,0.6776209473609924
222
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1698,100%,16,0.1849003044425631,0.0001063634870237,0.9539999961853028
223
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3146,100%,16,0.1849003044425631,0.0001063634870237,0.9539999961853028
224
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4144,100%,16,0.1849003044425631,0.0001063634870237,0.9639999866485596
225
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3064,100%,16,0.1849003044425631,0.0001063634870237,0.9660000205039978
226
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2803,100%,16,0.1849003044425631,0.0001063634870237,0.9430000185966492
227
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1624,100%,16,0.1849003044425631,0.0001063634870237,0.9760000109672546
228
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,614,100%,16,0.1849003044425631,0.0001063634870237,0.9559999704360962
229
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2735,100%,16,0.1849003044425631,0.0001063634870237,0.9580000042915344
230
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2931,100%,16,0.1849003044425631,0.0001063634870237,0.9639999866485596
231
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2808,100%,16,0.1849003044425631,0.0001063634870237,0.9480000138282776
232
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,272,100%,32,0.0028788214595454,6.027942222485105e-05,0.4803625345230102
233
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,719,100%,32,0.0028788214595454,6.027942222485105e-05,0.5075528621673584
234
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2115,100%,32,0.0028788214595454,6.027942222485105e-05,0.5629405975341797
235
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4503,100%,32,0.0028788214595454,6.027942222485105e-05,0.5156092643737793
236
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,940,100%,32,0.0028788214595454,6.027942222485105e-05,0.5276938676834106
237
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3361,100%,32,0.0028788214595454,6.027942222485105e-05,0.5236656665802002
238
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,543,100%,32,0.0028788214595454,6.027942222485105e-05,0.5085599422454834
239
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1667,100%,32,0.0028788214595454,6.027942222485105e-05,0.5357502698898315
240
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1312,100%,32,0.0028788214595454,6.027942222485105e-05,0.52064448595047
241
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3415,100%,32,0.0028788214595454,6.027942222485105e-05,0.5287008881568909
normalization_example.ipynb ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "c2352e4c",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "from utils.compute_tools import make_normalizer, load_normalizer"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "markdown",
16
+ "id": "0a3a5a5e",
17
+ "metadata": {},
18
+ "source": [
19
+ "## 1. normalization with max-min from your own results"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": null,
25
+ "id": "e95b280a",
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "#read results from csv file\n",
30
+ "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n",
31
+ "\n",
32
+ "benchmark_name=\"your_benchmark_name\" #set your desired benchmark_name\n",
33
+ "metric = \"test metric\" #column containing test metrics in csv file\n",
34
+ "make_normalizer(\n",
35
+ " results, \n",
36
+ " metrics=(metric,), \n",
37
+ " benchmark_name=benchmark_name\n",
38
+ " )\n",
39
+ "\n",
40
+ "#normalize results\n",
41
+ "normalizer = load_normalizer(benchmark_name=benchmark_name)\n",
42
+ "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n",
43
+ "\n",
44
+ "#save normalized values to file\n",
45
+ "results.to_csv(\"examples/normalized_results_and_parameters.csv\")"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "id": "7d3f1e10",
51
+ "metadata": {},
52
+ "source": [
53
+ "## 2. normalization with max-min from leaderboard base results"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "id": "07a21745",
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": [
63
+ "#read results from csv file\n",
64
+ "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n",
65
+ "\n",
66
+ "metric = \"test metric\" #column containing test metrics in csv file\n",
67
+ "make_normalizer(\n",
68
+ " results, \n",
69
+ " metrics=(metric,), \n",
70
+ " # benchmark_name=benchmark_name\n",
71
+ " )\n",
72
+ "\n",
73
+ "#normalize results\n",
74
+ "normalizer = load_normalizer() #leave benchmark name blank to use default leaderboard normalization values\n",
75
+ "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n",
76
+ "\n",
77
+ "#save normalized values to file\n",
78
+ "results.to_csv(\"examples/normalized_results_and_parameters.csv\")"
79
+ ]
80
+ }
81
+ ],
82
+ "metadata": {
83
+ "kernelspec": {
84
+ "display_name": "Python 3",
85
+ "language": "python",
86
+ "name": "python3"
87
+ },
88
+ "language_info": {
89
+ "codemirror_mode": {
90
+ "name": "ipython",
91
+ "version": 3
92
+ },
93
+ "file_extension": ".py",
94
+ "mimetype": "text/x-python",
95
+ "name": "python",
96
+ "nbconvert_exporter": "python",
97
+ "pygments_lexer": "ipython3",
98
+ "version": "3.9.6"
99
+ }
100
+ },
101
+ "nbformat": 4,
102
+ "nbformat_minor": 5
103
+ }
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # streamlit==#1.23
2
+ streamlit==1.50.0
3
+ pandas==2.2.3
4
+ # requests
5
+ # plotly
6
+ # gistyc
7
+ huggingface_hub==0.34.4
8
+ scipy==1.13.1
9
+ numpy==2.0.2
results/.DS_Store ADDED
Binary file (10.2 kB). View file
 
results/114be1f0-5a41-43a5-b4e6-7fb683bc01ec/additional_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Paper Link": "", "Code Repository Link ": "https://github.com/The-AI-Alliance/GEO-Bench-2", "License": "Apache 2.0", "Number of HPO trials": "10", "Number of repeated seeds trials": "5", "Additional information about submission": "These experiments were conducted as part of the release of the GEO-Bench-V2 datasets.", "Comments on new models in submission": "Describe any new models you have included which were not previously part of the leaderboard", "New model info": [{"model_display_name": "", "model_size": "", "unique_backbone_key": ""}]}
results/114be1f0-5a41-43a5-b4e6-7fb683bc01ec/results_and_parameters.csv ADDED
The diff for this file is too large to render. See raw diff
 
results/2ce4a907-7ae3-45d3-a07a-558f8d0d758b/additional_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Paper Link": "", "Code Repository Link ": "https://github.com/The-AI-Alliance/GEO-Bench-2", "License": "Apache 2.0", "Number of HPO trials": "10", "Additional information about submission": "These experiments were conducted as part of the release of the GEO-Bench-V2 datasets. The results differ from the main experimenst in that they use SAR input bands (vv and vh) for backbones with those bands. Additionally, the best performance is selected between between multi-modal (Sentinel1 + Sentinel2) results and Sentinel2 only results.", "Comments on new models in submission": "Describe any new models you have included which were not previously part of the leaderboard", "New model info": [{"model_display_name": "", "model_size": "", "unique_backbone_key": ""}]}
results/2ce4a907-7ae3-45d3-a07a-558f8d0d758b/results_and_parameters.csv ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset,Metric,test metric,mlflow_run_name,mlflow_run_id,mlflow_run_status,Seed,experiment_id,experiment_name,index,batch_size,lr,decoder,backbone,early_stop_patience,n_trials,partition_name,data_percentages,batch_size_selection,weight_decay,partition name,frozen_or_full_ft
2
+ kuro_siwo,Multiclass_Jaccard_Index,0.7027350068092346,kuro_siwo_mean_1829,8bf0b18e42534cfeb28c95c4d223b139,FINISHED,1829,352948250742384064,final_main_dofa_large_patch16_224,0,16,2.1734651841007975e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
3
+ kuro_siwo,Multiclass_Jaccard_Index,0.696682870388031,kuro_siwo_mean_2007,8cf11995a0a041bf964f50e6a59208e3,FINISHED,2007,352948250742384064,final_main_dofa_large_patch16_224,0,16,2.1734651841007975e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
4
+ kuro_siwo,Multiclass_Jaccard_Index,0.6902852058410645,kuro_siwo_mean_913,b478d9f5d81f421081d91948db7e9118,FINISHED,913,352948250742384064,final_main_dofa_large_patch16_224,0,16,2.1734651841007975e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
5
+ kuro_siwo,Multiclass_Jaccard_Index,0.6930838823318481,kuro_siwo_mean_2254,f9d5eaef63694c96aefa64d6c0717971,FINISHED,2254,352948250742384064,final_main_dofa_large_patch16_224,0,16,2.1734651841007975e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
6
+ kuro_siwo,Multiclass_Jaccard_Index,0.7017667293548584,kuro_siwo_mean_205,fb918750211d4607b77be91ac4386db3,FINISHED,205,352948250742384064,final_main_dofa_large_patch16_224,0,16,2.1734651841007975e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
7
+ benv2,Multilabel_F1_Score,0.7661927342414856,benv2_913,93bfa5abd6624479a57f50dd7b652d89,FINISHED,913,187261838745675157,final_main_terramind_v1_large,0,32,1.6854640185950023e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
8
+ benv2,Multilabel_F1_Score,0.7627988457679749,benv2_2007,9ed47b3c62734b0885809c27f83ef0ea,FINISHED,2007,187261838745675157,final_main_terramind_v1_large,0,32,1.6854640185950023e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
9
+ benv2,Multilabel_F1_Score,0.7654047012329102,benv2_205,a72a8e86fbfe4f0aad0f04c844343b64,FINISHED,205,187261838745675157,final_main_terramind_v1_large,0,32,1.6854640185950023e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
10
+ benv2,Multilabel_F1_Score,0.7620870471000671,benv2_2254,bef1608c103b440c8127ecfabc902510,FINISHED,2254,187261838745675157,final_main_terramind_v1_large,0,32,1.6854640185950023e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
11
+ benv2,Multilabel_F1_Score,0.7664718627929688,benv2_1829,ee32af4990e64a7cb4eeaf0ee1878703,FINISHED,1829,187261838745675157,final_main_terramind_v1_large,0,32,1.6854640185950023e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
12
+ biomassters,RMSE,0.9600617068058296,biomassters_3709,0d6679e9363847a293d595f7036727a1,FINISHED,3709,187261838745675157,final_main_terramind_v1_large,0,16,3.5687963643724935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
13
+ biomassters,RMSE,0.960075930313406,biomassters_2004,7c38d0013d9c4b739103ae70c72bae42,FINISHED,2004,187261838745675157,final_main_terramind_v1_large,0,16,3.5687963643724935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
14
+ biomassters,RMSE,0.9600184425339132,biomassters_517,835f47675ee64b78a247c37581f0bbc6,FINISHED,517,187261838745675157,final_main_terramind_v1_large,0,16,3.5687963643724935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
15
+ biomassters,RMSE,0.9599535499078812,biomassters_3212,d44f8450d0b644018b2fb7f3777a251c,FINISHED,3212,187261838745675157,final_main_terramind_v1_large,0,16,3.5687963643724935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
16
+ biomassters,RMSE,0.9600944613389646,biomassters_2181,e357564f8040497c8b79637f5be1aaf3,FINISHED,2181,187261838745675157,final_main_terramind_v1_large,0,16,3.5687963643724935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
17
+ treesatai,Multilabel_F1_Score,0.6434163451194763,treesatai_1829,2c9433a138bd4e54a59a843bb6097fb6,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,16,1.4856303554806574e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
18
+ treesatai,Multilabel_F1_Score,0.6427352428436279,treesatai_913,5f8c37a366114e73afca33786775ec18,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,16,1.4856303554806574e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
19
+ treesatai,Multilabel_F1_Score,0.6456222534179688,treesatai_2254,7efd840abb6f439fb5fc51295ce4ad14,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,16,1.4856303554806574e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
20
+ treesatai,Multilabel_F1_Score,0.6432837843894958,treesatai_205,80c571e4fa52436e9485732821a35d02,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,16,1.4856303554806574e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
21
+ treesatai,Multilabel_F1_Score,0.6295856237411499,treesatai_2007,914141bf92794bbd8e7635c0a12caecc,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,16,1.4856303554806574e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
22
+ cloudsen12,Multiclass_Jaccard_Index,0.6083433628082275,cloudsen12_2007,0c7bfe38cdd9408b9a7c4ea368549d05,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.01219601133369e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
23
+ cloudsen12,Multiclass_Jaccard_Index,0.6143325567245483,cloudsen12_913,193a0cb48eb442f4828c1b6bc26d6094,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.01219601133369e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
24
+ cloudsen12,Multiclass_Jaccard_Index,0.6288191080093384,cloudsen12_1829,6aa2aab0569d488cbbdd650fc3f6ee03,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.01219601133369e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
25
+ cloudsen12,Multiclass_Jaccard_Index,0.6256763339042664,cloudsen12_205,abbbced195a345c484c4f81a6b9a3a41,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.01219601133369e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
26
+ cloudsen12,Multiclass_Jaccard_Index,0.5966204404830933,cloudsen12_2254,b392c01b01dc4cde8ee5871bf71bfe8f,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.01219601133369e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
27
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2227849066257476,dynamic_earthnet_2007,274e7995347f47fa842330476948b6f8,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,8,0.0001225410111414,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
28
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.1974807381629943,dynamic_earthnet_2254,5e45f39ec2dc45f5b37350653b93fdab,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,8,0.0001225410111414,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
29
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2498252987861633,dynamic_earthnet_1829,88d23a9ef15240c6a56d52f7884187bf,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,8,0.0001225410111414,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
30
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2542161047458648,dynamic_earthnet_205,bf867a28362c4b17a7bb54c8db19895a,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,8,0.0001225410111414,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
31
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3165871500968933,dynamic_earthnet_913,f09a0b7ead7d40918d715f7286cf2001,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,8,0.0001225410111414,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
32
+ forestnet,Overall_Accuracy,0.5438066720962524,forestnet_2007,4d6bcb60f3d641a89bc6c1de9b92ff27,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.529707471348659e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
33
+ forestnet,Overall_Accuracy,0.5548841953277588,forestnet_205,4f531a7701dc4b2cbd52d6a45e5421f9,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.529707471348659e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
34
+ forestnet,Overall_Accuracy,0.5518630146980286,forestnet_1829,9785e60235e947e384dec4fc3d7d6770,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.529707471348659e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
35
+ forestnet,Overall_Accuracy,0.5417925715446472,forestnet_913,b223f3941d494872980ff3befd0c8b93,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.529707471348659e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
36
+ forestnet,Overall_Accuracy,0.5709969997406006,forestnet_2254,cc43ff06c90e4a00aedf53dde37fe8b4,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,16,7.529707471348659e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
37
+ spacenet2,Multiclass_Jaccard_Index,0.8707944750785828,spacenet2_2254,752b0a638ce9427f9b3fbad0b3d3892b,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.5596487626570115e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
38
+ spacenet2,Multiclass_Jaccard_Index,0.8679686188697815,spacenet2_205,9b77ff78cb0b45c085ce433239bf391d,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.5596487626570115e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
39
+ spacenet2,Multiclass_Jaccard_Index,0.868889570236206,spacenet2_2007,c8191395b80f455099bb26301dd0f888,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.5596487626570115e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
40
+ spacenet2,Multiclass_Jaccard_Index,0.8709847927093506,spacenet2_1829,f3cf167614db49f1887353607ff0adab,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.5596487626570115e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
41
+ spacenet2,Multiclass_Jaccard_Index,0.8698230981826782,spacenet2_913,fe23665c5bfb47ad8a8082ef00ec9e34,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.5596487626570115e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
42
+ fotw,Multiclass_Jaccard_Index,0.5704560279846191,fotw_2254,34410287f59b41e39c0bd8bba66129f7,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,32,8.128380314143639e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
43
+ fotw,Multiclass_Jaccard_Index,0.5707604885101318,fotw_1829,5f876fe2f93f4c798d4ae1a8cab0e438,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,32,8.128380314143639e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
44
+ fotw,Multiclass_Jaccard_Index,0.5685666799545288,fotw_205,622e20a7dcf844f8a90073f8495aa4ec,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,32,8.128380314143639e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
45
+ fotw,Multiclass_Jaccard_Index,0.5764850378036499,fotw_913,62bdc75f599a42688f836dddda074c3f,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,32,8.128380314143639e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
46
+ fotw,Multiclass_Jaccard_Index,0.5762674808502197,fotw_2007,8fb093eed1594b93888c9321ea6f5d99,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,32,8.128380314143639e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
47
+ caffe,Multiclass_Jaccard_Index,0.6207649111747742,caffe_2007,43c6708d451c4ca4bcfec193f889d855,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,8,8.979909406203737e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
48
+ caffe,Multiclass_Jaccard_Index,0.6483673453330994,caffe_205,45b92a6aca2a45b69a2a914d1e8dfe65,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,8,8.979909406203737e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
49
+ caffe,Multiclass_Jaccard_Index,0.6169370412826538,caffe_2254,71384199fef54e389d97a5aa9df05c24,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,8,8.979909406203737e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
50
+ caffe,Multiclass_Jaccard_Index,0.6701884269714355,caffe_913,94f135f67e9b4115a1e21d9368900c4d,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,8,8.979909406203737e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
51
+ caffe,Multiclass_Jaccard_Index,0.6350060105323792,caffe_1829,cea6958e29654faeb171394d1b426f7c,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,8,8.979909406203737e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
52
+ burn_scars,Multiclass_Jaccard_Index,0.8865088224411011,burn_scars_1829,47ef0e9e50574d4193f047b61fa419af,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.860940083914165e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
53
+ burn_scars,Multiclass_Jaccard_Index,0.8995709419250488,burn_scars_2007,4cdd7cb0a402479cbd309863d0d1709f,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.860940083914165e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
54
+ burn_scars,Multiclass_Jaccard_Index,0.8901950120925903,burn_scars_913,87d867e03ed74dd9aa50a64920eca51b,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.860940083914165e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
55
+ burn_scars,Multiclass_Jaccard_Index,0.8866046667098999,burn_scars_205,8ace465629784870918db6887da14778,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.860940083914165e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
56
+ burn_scars,Multiclass_Jaccard_Index,0.8964208960533142,burn_scars_2254,d2ef7358586449f3b5c8745c80cb42d2,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,32,1.860940083914165e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
57
+ pastis,Multiclass_Jaccard_Index,0.3643054366111755,pastis_3828,175c080fbf164875b9eb0755b26d1a85,FINISHED,3828,602968560747083429,final_main_dofa_large_patch16_224,0,16,0.0001772335383556,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
58
+ pastis,Multiclass_Jaccard_Index,0.3606434166431427,pastis_4498,843693ed0acf4446b609c367e8486bab,FINISHED,4498,602968560747083429,final_main_dofa_large_patch16_224,0,16,0.0001772335383556,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
59
+ pastis,Multiclass_Jaccard_Index,0.373330682516098,pastis_3994,a8f6992888884b3fbb798642ed9d4223,FINISHED,3994,602968560747083429,final_main_dofa_large_patch16_224,0,16,0.0001772335383556,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
60
+ pastis,Multiclass_Jaccard_Index,0.3611724972724914,pastis_4959,d56fe442d7494230ae309402f4e980ed,FINISHED,4959,602968560747083429,final_main_dofa_large_patch16_224,0,16,0.0001772335383556,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
61
+ pastis,Multiclass_Jaccard_Index,0.3584975600242615,pastis_2138,e7050f80f2a043628e3ac34fe600f90f,FINISHED,2138,602968560747083429,final_main_dofa_large_patch16_224,0,16,0.0001772335383556,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
62
+ benv2,Multilabel_F1_Score,0.7438075542449951,benv2_2007,0b48b11457214766ba7f73274f3ab6ae,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,8,1.8432765430149102e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
63
+ benv2,Multilabel_F1_Score,0.746505856513977,benv2_1829,5386f90e29804fa285c408ad8caf0aca,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,8,1.8432765430149102e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
64
+ benv2,Multilabel_F1_Score,0.7387846112251282,benv2_2254,59bdca639654431597ca6ee7e1b7e0a7,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,8,1.8432765430149102e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
65
+ benv2,Multilabel_F1_Score,0.7331004738807678,benv2_205,b17277691f384aa19b68b6027f6585a3,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,8,1.8432765430149102e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
66
+ benv2,Multilabel_F1_Score,0.7418051958084106,benv2_913,d7b9751ad6a54accaf2eaf9b92bb8837,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,8,1.8432765430149102e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
67
+ spacenet7,Multiclass_Jaccard_Index,0.5852291584014893,spacenet7_1829,20621f87303540459bfdd532a776a22d,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,16,6.896963289323795e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
68
+ spacenet7,Multiclass_Jaccard_Index,0.5895407795906067,spacenet7_2007,4eecaa23d018446aacf10a46ba9fc68f,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,16,6.896963289323795e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
69
+ spacenet7,Multiclass_Jaccard_Index,0.5664384365081787,spacenet7_913,933a40f9d02f481bbdf40327e922d24a,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,16,6.896963289323795e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
70
+ spacenet7,Multiclass_Jaccard_Index,0.5767611861228943,spacenet7_205,a971911204de4355bcd98dcd0e24ef42,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,16,6.896963289323795e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
71
+ spacenet7,Multiclass_Jaccard_Index,0.5797898769378662,spacenet7_2254,f4ced3e0f6ae4199b4e8cea45c7a154a,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,16,6.896963289323795e-05,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
72
+ flair2,Multiclass_Jaccard_Index,0.5243004560470581,flair2_1829,175928a05cc34d54bf95b6582d9af28a,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,8,6.8882846462248425e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
73
+ flair2,Multiclass_Jaccard_Index,0.5314410328865051,flair2_913,57dae9985db04f4595cf3975759a86a5,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,8,6.8882846462248425e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
74
+ flair2,Multiclass_Jaccard_Index,0.5262851715087891,flair2_2254,66efe7141914457abc40f48d003a2eef,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,8,6.8882846462248425e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
75
+ flair2,Multiclass_Jaccard_Index,0.5236417651176453,flair2_205,6bf6974e97614498bf62b94dd59b3297,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,8,6.8882846462248425e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
76
+ flair2,Multiclass_Jaccard_Index,0.5276963710784912,flair2_2007,d57653ff21014f0891e061cfdf6740cc,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,8,6.8882846462248425e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
77
+ so2sat,Overall_Accuracy,0.6237322688102722,so2sat_205,1c9fbeded1774ffa8967e5f05bace4cb,FINISHED,205,602968560747083429,final_main_dofa_large_patch16_224,0,32,7.704775944514587e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
78
+ so2sat,Overall_Accuracy,0.6277890205383301,so2sat_2007,233e7095159142dc839ac2274e9fa407,FINISHED,2007,602968560747083429,final_main_dofa_large_patch16_224,0,32,7.704775944514587e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
79
+ so2sat,Overall_Accuracy,0.6135902404785156,so2sat_2254,5923296a78184290b94ea7b2f27bd6e5,FINISHED,2254,602968560747083429,final_main_dofa_large_patch16_224,0,32,7.704775944514587e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
80
+ so2sat,Overall_Accuracy,0.6085192561149597,so2sat_913,7c3a1ffccf14403cbe16645f37f7a52e,FINISHED,913,602968560747083429,final_main_dofa_large_patch16_224,0,32,7.704775944514587e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
81
+ so2sat,Overall_Accuracy,0.6004056930541992,so2sat_1829,918f557298d54fe7a8b51b4998c006d2,FINISHED,1829,602968560747083429,final_main_dofa_large_patch16_224,0,32,7.704775944514587e-06,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
82
+ biomassters,RMSE,0.9558932320251284,biomassters_205,18a3169412e648159ba6a0329eda4892,FINISHED,205,744656354097600381,final_main_dofa_large_patch16_224,0,32,0.0001600422501584,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
83
+ biomassters,RMSE,0.9561515885579914,biomassters_913,264415783a664a0780da1e88a91fce93,FINISHED,913,744656354097600381,final_main_dofa_large_patch16_224,0,32,0.0001600422501584,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
84
+ biomassters,RMSE,0.9563273420989667,biomassters_2254,8214cbc3006148499bf9b4d7a04135b1,FINISHED,2254,744656354097600381,final_main_dofa_large_patch16_224,0,32,0.0001600422501584,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
85
+ biomassters,RMSE,0.9562463463899084,biomassters_2007,e0049a87b64044f4b0f78a00dfff7864,FINISHED,2007,744656354097600381,final_main_dofa_large_patch16_224,0,32,0.0001600422501584,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
86
+ biomassters,RMSE,0.955642991325092,biomassters_1829,e811b895b9524bcf91623cfd9d1d2782,FINISHED,1829,744656354097600381,final_main_dofa_large_patch16_224,0,32,0.0001600422501584,UNet,dofa_large_patch16_224,10.0,16,default,100,HPO,0.01,100%,full_ft
87
+ biomassters,RMSE,0.9573879029464148,biomassters_2007,1036c854e21d4f1c8a733ce8732aef4c,FINISHED,2007,255611966290211098,final_main_clay_v1_base,0,8,0.0001510693802786,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
88
+ biomassters,RMSE,0.9575604343580482,biomassters_205,3619b9b9de7a4d4ba80605b72c0eaf9a,FINISHED,205,255611966290211098,final_main_clay_v1_base,0,8,0.0001510693802786,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
89
+ biomassters,RMSE,0.9575122120913346,biomassters_2254,4d7f37d3b0ea4eaa8b842bf92c2332a6,FINISHED,2254,255611966290211098,final_main_clay_v1_base,0,8,0.0001510693802786,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
90
+ biomassters,RMSE,0.957540802816482,biomassters_913,749f5759aec34b6bb5d54845357e3a50,FINISHED,913,255611966290211098,final_main_clay_v1_base,0,8,0.0001510693802786,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
91
+ biomassters,RMSE,0.957558218198665,biomassters_1829,e705392713f9476d84d260d9cca94eac,FINISHED,1829,255611966290211098,final_main_clay_v1_base,0,8,0.0001510693802786,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
92
+ treesatai,Multilabel_F1_Score,0.6082392334938049,treesatai_2007,033840637b5b413e98c8c4a93c354a16,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,1.884527322686325e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
93
+ treesatai,Multilabel_F1_Score,0.6026829481124878,treesatai_1829,07316201f3c74ad686d396651fd15b4c,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,1.884527322686325e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
94
+ treesatai,Multilabel_F1_Score,0.6134301424026489,treesatai_913,88a1381a6edc457c8c68f0e79a0f8c56,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,1.884527322686325e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
95
+ treesatai,Multilabel_F1_Score,0.6063681840896606,treesatai_205,9ce93db3dbf747a2946ffa5636242e0c,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,1.884527322686325e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
96
+ treesatai,Multilabel_F1_Score,0.6038383841514587,treesatai_2254,fef3efd9ec8c4e51ab53f57a5679d62d,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,1.884527322686325e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
97
+ cloudsen12,Multiclass_Jaccard_Index,0.6427658796310425,cloudsen12_913,6a46441f69f64b198c9aa59e4d6f307c,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,7.996310139856582e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
98
+ cloudsen12,Multiclass_Jaccard_Index,0.6333767175674438,cloudsen12_2007,7782abff14e94db2b0a475a2630cab11,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,7.996310139856582e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
99
+ cloudsen12,Multiclass_Jaccard_Index,0.6486442685127258,cloudsen12_2254,784dea19a46849f4bb145c4073c2501e,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,7.996310139856582e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
100
+ cloudsen12,Multiclass_Jaccard_Index,0.6247012615203857,cloudsen12_205,c7b9d65df3724ed6b821d90ad35ef43e,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,7.996310139856582e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
101
+ cloudsen12,Multiclass_Jaccard_Index,0.6452000141143799,cloudsen12_1829,e705b56b8ca74d578d2fac8d7ac06e02,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,7.996310139856582e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
102
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3228030800819397,dynamic_earthnet_1829,03bc8f8838ea4802a90819bd781eda99,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,7.302073764938037e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
103
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3438019752502441,dynamic_earthnet_2254,12d3ed6f16e340e4a70fbf3cc66c1bff,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,7.302073764938037e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
104
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3542783260345459,dynamic_earthnet_913,5d1e4ce6a5304f65a91d2bb9dcba64ee,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,7.302073764938037e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
105
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3484990894794464,dynamic_earthnet_2007,78971c3f274d4a579bbfcc32ce4f2df7,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,7.302073764938037e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
106
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3561779260635376,dynamic_earthnet_205,bdcae37855d74a6a852f9702bc76ca7b,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,7.302073764938037e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
107
+ forestnet,Overall_Accuracy,0.5468277931213379,forestnet_2254,3d88a92d7de64496947a75d68028456b,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,4.156509715420542e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
108
+ forestnet,Overall_Accuracy,0.5317220687866211,forestnet_2007,578df2d3a74e4fc4bdcba6cee3ca7c10,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,4.156509715420542e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
109
+ forestnet,Overall_Accuracy,0.5236656665802002,forestnet_913,837ee66991224ef4aec5db5cbc0a22f3,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,4.156509715420542e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
110
+ forestnet,Overall_Accuracy,0.5367572903633118,forestnet_205,8aec0a7f54ec4514b99be1f6d74156b6,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,4.156509715420542e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
111
+ forestnet,Overall_Accuracy,0.5266867876052856,forestnet_1829,d9fd4a9c061743fda49691f78f6c616a,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,4.156509715420542e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
112
+ spacenet2,Multiclass_Jaccard_Index,0.8624110221862793,spacenet2_1829,2589d12ccad34d0fafff972296a68a80,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,32,3.8520774982759184e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
113
+ spacenet2,Multiclass_Jaccard_Index,0.8709872364997864,spacenet2_2254,4607fe38394749d9a16bd205d2943311,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,32,3.8520774982759184e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
114
+ spacenet2,Multiclass_Jaccard_Index,0.8712811470031738,spacenet2_2007,64653fa24c6f4a8da05bbb261e57b5c0,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,32,3.8520774982759184e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
115
+ spacenet2,Multiclass_Jaccard_Index,0.8687437176704407,spacenet2_205,b6aabd890d37409c994e0b6e0f1f8eb4,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,32,3.8520774982759184e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
116
+ spacenet2,Multiclass_Jaccard_Index,0.8694702386856079,spacenet2_913,c9c64e3a5efd44a39802d01cb1ed49b6,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,32,3.8520774982759184e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
117
+ fotw,Multiclass_Jaccard_Index,0.5768706798553467,fotw_1829,1b4b4cb204954795821566a0b8f6c5c0,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,16,4.67119403305935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
118
+ fotw,Multiclass_Jaccard_Index,0.5796996355056763,fotw_913,2789ce0d3f414345b0ab718a4feff4af,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,16,4.67119403305935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
119
+ fotw,Multiclass_Jaccard_Index,0.5840237140655518,fotw_2254,65b8b4dbd0f640338073f3d55c146505,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,16,4.67119403305935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
120
+ fotw,Multiclass_Jaccard_Index,0.5741722583770752,fotw_205,96e331aa9efa41998981739178b04578,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,16,4.67119403305935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
121
+ fotw,Multiclass_Jaccard_Index,0.579285740852356,fotw_2007,aae42db4d03c4e3898a08f25bca7b816,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,16,4.67119403305935e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
122
+ caffe,Multiclass_Jaccard_Index,0.6605269908905029,caffe_913,34e240db26b04acb8d01c291db903a94,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,16,8.278042946046306e-06,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
123
+ caffe,Multiclass_Jaccard_Index,0.6455444097518921,caffe_205,4bda602a46ce4b37815e2f5576bce4db,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,16,8.278042946046306e-06,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
124
+ caffe,Multiclass_Jaccard_Index,0.6482639908790588,caffe_2254,6ea7f2a51c004c249defb15d2286fb74,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,16,8.278042946046306e-06,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
125
+ caffe,Multiclass_Jaccard_Index,0.6465308666229248,caffe_2007,cf5fe701018e4f03a4c97cfebf3fce6d,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,16,8.278042946046306e-06,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
126
+ caffe,Multiclass_Jaccard_Index,0.6363961696624756,caffe_1829,fd610248f29549528d27829254790f07,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,16,8.278042946046306e-06,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
127
+ burn_scars,Multiclass_Jaccard_Index,0.8888662457466125,burn_scars_1829,069c2eea2c92431d96a3bed9ca1db52c,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,32,7.44952527451419e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
128
+ burn_scars,Multiclass_Jaccard_Index,0.8771705627441406,burn_scars_913,604edeaf9ac8486585043f88341db731,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,32,7.44952527451419e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
129
+ burn_scars,Multiclass_Jaccard_Index,0.8922334909439087,burn_scars_2007,ae63d7f5a18c408e8a79534739ca8a27,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,32,7.44952527451419e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
130
+ burn_scars,Multiclass_Jaccard_Index,0.879090428352356,burn_scars_205,cde4507650344235928f720a894d81c2,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,32,7.44952527451419e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
131
+ burn_scars,Multiclass_Jaccard_Index,0.881941020488739,burn_scars_2254,de59f1e05c74467faa757aef6f54bea7,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,32,7.44952527451419e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
132
+ pastis,Multiclass_Jaccard_Index,0.4315944612026214,pastis_1829,0d2e2c0ae76c437e8f499d3045082f93,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,8.464490029955513e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
133
+ pastis,Multiclass_Jaccard_Index,0.43324875831604,pastis_913,35c99424df74475884e1cc988421f252,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,8.464490029955513e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
134
+ pastis,Multiclass_Jaccard_Index,0.4276216924190521,pastis_205,5fc80028bb4e4e1fb4e583f9fba648a4,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,8.464490029955513e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
135
+ pastis,Multiclass_Jaccard_Index,0.4324474334716797,pastis_2007,6f6dc06bd68346d9a0c631d073a49d5b,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,8.464490029955513e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
136
+ pastis,Multiclass_Jaccard_Index,0.4276187121868133,pastis_2254,c9c88eaf8a0b4aa691efc66fcd743ce1,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,8.464490029955513e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
137
+ spacenet7,Multiclass_Jaccard_Index,0.5814478993415833,spacenet7_913,410b02e0a346456abd8dfbf35219f687,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,8,0.0001048690356486,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
138
+ spacenet7,Multiclass_Jaccard_Index,0.5786465406417847,spacenet7_1829,4a0ece393cce4b568d751ebb1035747d,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,8,0.0001048690356486,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
139
+ spacenet7,Multiclass_Jaccard_Index,0.5747677683830261,spacenet7_205,872cc3ef97324871ba9d246575a81713,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,8,0.0001048690356486,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
140
+ spacenet7,Multiclass_Jaccard_Index,0.5899662375450134,spacenet7_2254,955c7be0b4084cacb9901afec6eb5755,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,8,0.0001048690356486,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
141
+ spacenet7,Multiclass_Jaccard_Index,0.5882823467254639,spacenet7_2007,e235ab18157447f7b5ed47c9e7018136,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,8,0.0001048690356486,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
142
+ flair2,Multiclass_Jaccard_Index,0.4562640488147735,flair2_2007,0bbb60bbc0cb48eb8afe360ec4e36f05,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,32,2.156939442656292e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
143
+ flair2,Multiclass_Jaccard_Index,0.4799627661705017,flair2_1829,35636fa259814f38839d09d0e6121ea1,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,32,2.156939442656292e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
144
+ flair2,Multiclass_Jaccard_Index,0.4654695093631744,flair2_205,8a6daf00a44c40f8bad810d2752b9435,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,32,2.156939442656292e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
145
+ flair2,Multiclass_Jaccard_Index,0.475152850151062,flair2_913,a319297b35f844aa88d6fc6b743e0ffe,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,32,2.156939442656292e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
146
+ flair2,Multiclass_Jaccard_Index,0.4621029496192932,flair2_2254,b54a1010d9534657ade333bd719db283,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,32,2.156939442656292e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
147
+ so2sat,Overall_Accuracy,0.6176470518112183,so2sat_1829,4aff70ce17d749218b387abd72222e2e,FINISHED,1829,450828154493670864,final_main_terramind_v1_large,0,16,1.1833931015226612e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
148
+ so2sat,Overall_Accuracy,0.6237322688102722,so2sat_2254,9abcf955cd1442a5a03c9fe9fefde591,FINISHED,2254,450828154493670864,final_main_terramind_v1_large,0,16,1.1833931015226612e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
149
+ so2sat,Overall_Accuracy,0.6176470518112183,so2sat_2007,c66f9fde32e84bc6843965abde8c5c9e,FINISHED,2007,450828154493670864,final_main_terramind_v1_large,0,16,1.1833931015226612e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
150
+ so2sat,Overall_Accuracy,0.6541582345962524,so2sat_913,cccbd9b5a7b74830836c5fec3c2509a5,FINISHED,913,450828154493670864,final_main_terramind_v1_large,0,16,1.1833931015226612e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
151
+ so2sat,Overall_Accuracy,0.5882353186607361,so2sat_205,cf558c8ef6c741349661bc5fedbe40b7,FINISHED,205,450828154493670864,final_main_terramind_v1_large,0,16,1.1833931015226612e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
152
+ treesatai,Multilabel_F1_Score,0.6343602538108826,treesatai_1829,12ea388a636f4203a47d4785008610aa,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,8,5.344035791344604e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
153
+ treesatai,Multilabel_F1_Score,0.6290724277496338,treesatai_913,2b86d48dcfd640ca825673845b00059c,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,8,5.344035791344604e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
154
+ treesatai,Multilabel_F1_Score,0.6141548752784729,treesatai_2007,9b96c12e36624079bcce5bd97a6f1167,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,8,5.344035791344604e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
155
+ treesatai,Multilabel_F1_Score,0.6324618458747864,treesatai_2254,9ca6b9d928ac4a38b3946670739e9451,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,8,5.344035791344604e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
156
+ treesatai,Multilabel_F1_Score,0.6322035789489746,treesatai_205,cce64706c75041df86536f44a90e215c,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,8,5.344035791344604e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
157
+ cloudsen12,Multiclass_Jaccard_Index,0.6351529359817505,cloudsen12_913,48774f9a97624315ae3e886eacfe0435,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,16,0.0001394626650077,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
158
+ cloudsen12,Multiclass_Jaccard_Index,0.6364178657531738,cloudsen12_205,91aae5ab96c248a4a722e307d3ff1b03,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,16,0.0001394626650077,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
159
+ cloudsen12,Multiclass_Jaccard_Index,0.6383556127548218,cloudsen12_1829,abb4ff93602c4003bc642c230a0ffda8,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,16,0.0001394626650077,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
160
+ cloudsen12,Multiclass_Jaccard_Index,0.6329723000526428,cloudsen12_2007,ca5fac56485143c9ac4ec944472cea76,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,16,0.0001394626650077,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
161
+ cloudsen12,Multiclass_Jaccard_Index,0.6371685266494751,cloudsen12_2254,f74250c15b2c43d38785625fbd4bf222,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,16,0.0001394626650077,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
162
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.3079797029495239,dynamic_earthnet_205,6a138209c8694d358d3f034656644388,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,8,0.0002096829865225,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
163
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2587114870548248,dynamic_earthnet_2007,7fabb3c69acb4642a0d1d1e6f57e85d7,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,8,0.0002096829865225,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
164
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2470388710498809,dynamic_earthnet_2254,8dac79da836a4574abdd0e26a24f1701,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,8,0.0002096829865225,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
165
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.2762714624404907,dynamic_earthnet_1829,952228b5f26a4f6b90f9dde90980738c,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,8,0.0002096829865225,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
166
+ dynamic_earthnet,Multiclass_Jaccard_Index,0.246768832206726,dynamic_earthnet_913,9694beac28d24665be7ad33feca9ead5,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,8,0.0002096829865225,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
167
+ forestnet,Overall_Accuracy,0.5488418936729431,forestnet_205,37ea0560f7d34e918062ec3f831e65cb,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,32,0.0001223388869719,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
168
+ forestnet,Overall_Accuracy,0.5317220687866211,forestnet_2254,4f1d76022532497f934a9678d9fbebc6,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,32,0.0001223388869719,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
169
+ forestnet,Overall_Accuracy,0.5005035400390625,forestnet_913,8b315bccf68c4147882564e29ac4a1ac,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,32,0.0001223388869719,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
170
+ forestnet,Overall_Accuracy,0.5518630146980286,forestnet_2007,9a473930c9454ba6b38a046346cb5fca,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,32,0.0001223388869719,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
171
+ forestnet,Overall_Accuracy,0.5065458416938782,forestnet_1829,dae6cc8e0d0b410d9c3f496f5b13ed0e,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,32,0.0001223388869719,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
172
+ spacenet2,Multiclass_Jaccard_Index,0.8664951324462891,spacenet2_913,13ebb9b45c1a4ba2a54d73e569d27fe2,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,8,6.071043686824564e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
173
+ spacenet2,Multiclass_Jaccard_Index,0.8692799806594849,spacenet2_1829,176909c954a74b418a0de6bee5925a01,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,8,6.071043686824564e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
174
+ spacenet2,Multiclass_Jaccard_Index,0.8709346055984497,spacenet2_2007,1a51dba9c52d47c19c48f7139c4df1d1,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,8,6.071043686824564e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
175
+ spacenet2,Multiclass_Jaccard_Index,0.870833694934845,spacenet2_205,4ff74e0221944c95856d066cadec3a23,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,8,6.071043686824564e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
176
+ spacenet2,Multiclass_Jaccard_Index,0.8743444681167603,spacenet2_2254,51ba890b2c0a4f2cb2cda126adfa5b5c,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,8,6.071043686824564e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
177
+ fotw,Multiclass_Jaccard_Index,0.6070407629013062,fotw_2007,1ba9a8e35df942ffa6f91a6f598bd5bf,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,8,5.520798769772461e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
178
+ fotw,Multiclass_Jaccard_Index,0.6036347150802612,fotw_205,36e2bc873a784e30aeebfea7f24927b2,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,8,5.520798769772461e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
179
+ fotw,Multiclass_Jaccard_Index,0.605728268623352,fotw_2254,67db7eeadc1048f7af0410bad101314c,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,8,5.520798769772461e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
180
+ fotw,Multiclass_Jaccard_Index,0.6179081797599792,fotw_913,b7f204a7be1d4a07b2008020f8ad6c04,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,8,5.520798769772461e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
181
+ fotw,Multiclass_Jaccard_Index,0.6066063642501831,fotw_1829,edbdae2b1e2b4ec99b1bf31559200d41,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,8,5.520798769772461e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
182
+ caffe,Multiclass_Jaccard_Index,0.6686878204345703,caffe_2007,0f542956e329458f8f01111b3cf83449,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,32,4.593751430162973e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
183
+ caffe,Multiclass_Jaccard_Index,0.6210277080535889,caffe_205,46f663557ee24e209fc8a210da6682b9,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,32,4.593751430162973e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
184
+ caffe,Multiclass_Jaccard_Index,0.6501009464263916,caffe_1829,5659720de54545d3b6a525e52d83811d,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,32,4.593751430162973e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
185
+ caffe,Multiclass_Jaccard_Index,0.6309058666229248,caffe_2254,a4d26ba70ce4410e8e428c3e77e46eaf,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,32,4.593751430162973e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
186
+ caffe,Multiclass_Jaccard_Index,0.6710712909698486,caffe_913,e35ded1248c94b3480dcd08cab302d2b,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,32,4.593751430162973e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
187
+ burn_scars,Multiclass_Jaccard_Index,0.9009078741073608,burn_scars_4364,580a0ba49acf4476a14ebd6a4066e2b9,FINISHED,4364,795717026824507105,final_main_clay_v1_base,0,32,3.749218153450784e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
188
+ burn_scars,Multiclass_Jaccard_Index,0.8782541155815125,burn_scars_656,98323884f1de46f987cc3a68e542c2ef,FINISHED,656,795717026824507105,final_main_clay_v1_base,0,32,3.749218153450784e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
189
+ burn_scars,Multiclass_Jaccard_Index,0.9017086625099182,burn_scars_2070,b0d45ad78cfd496e9cd7c93acfa3b1b5,FINISHED,2070,795717026824507105,final_main_clay_v1_base,0,32,3.749218153450784e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
190
+ burn_scars,Multiclass_Jaccard_Index,0.8936687707901001,burn_scars_948,e5c80d7cd324434a9cdfdc426ac916a2,FINISHED,948,795717026824507105,final_main_clay_v1_base,0,32,3.749218153450784e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
191
+ burn_scars,Multiclass_Jaccard_Index,0.8911995887756348,burn_scars_2647,f9fd13f44f124fe595ced9ab301a29e7,FINISHED,2647,795717026824507105,final_main_clay_v1_base,0,32,3.749218153450784e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
192
+ pastis,Multiclass_Jaccard_Index,0.4113161563873291,pastis_1829,0a46d9a17f5148ad93e1e0c1e81976b5,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,8,0.0002878510754975,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
193
+ pastis,Multiclass_Jaccard_Index,0.4224403500556946,pastis_2254,255628a1ac8049fa870af21d49782a0d,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,8,0.0002878510754975,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
194
+ pastis,Multiclass_Jaccard_Index,0.4202279448509216,pastis_2007,279e2ee9edde4e36a16966a6073c2a32,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,8,0.0002878510754975,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
195
+ pastis,Multiclass_Jaccard_Index,0.4170020818710327,pastis_913,32b47f39049d4cdaba5750b9e64bb8ef,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,8,0.0002878510754975,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
196
+ pastis,Multiclass_Jaccard_Index,0.4030401408672333,pastis_205,73ff8f6483f24f65821ecb01126c1bd0,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,8,0.0002878510754975,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
197
+ benv2,Multilabel_F1_Score,0.7354453206062317,benv2_2007,086018e6cf9b488d85c0e7d81139ce51,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,32,3.33308410048262e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
198
+ benv2,Multilabel_F1_Score,0.7400927543640137,benv2_1829,57c035db70c74d0ab020c3d2a9aa5b9d,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,32,3.33308410048262e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
199
+ benv2,Multilabel_F1_Score,0.7335430383682251,benv2_913,6addd7ee828b4be0a7584f7bdca2afa5,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,32,3.33308410048262e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
200
+ benv2,Multilabel_F1_Score,0.7419769763946533,benv2_205,8ba51de7b6dd4590a48dbdad5c99c184,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,32,3.33308410048262e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
201
+ benv2,Multilabel_F1_Score,0.7317450642585754,benv2_2254,e91a6a1bb8a048ffaa799ab1b4cb26e4,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,32,3.33308410048262e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
202
+ spacenet7,Multiclass_Jaccard_Index,0.6278140544891357,spacenet7_913,23931df3647a447b98924afd9156e50e,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,16,9.950013781622509e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
203
+ spacenet7,Multiclass_Jaccard_Index,0.6355001330375671,spacenet7_2007,595b9164f38e422b80b23b61c34c21bb,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,16,9.950013781622509e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
204
+ spacenet7,Multiclass_Jaccard_Index,0.6344202756881714,spacenet7_1829,d6682647027e4c60aa546b7403296c6b,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,16,9.950013781622509e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
205
+ spacenet7,Multiclass_Jaccard_Index,0.6402554512023926,spacenet7_205,e20cf0add6fa4906acacf152506635fd,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,16,9.950013781622509e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
206
+ spacenet7,Multiclass_Jaccard_Index,0.6243715882301331,spacenet7_2254,f858df0a0ba94f1cae42ed00d8d5b33c,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,16,9.950013781622509e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
207
+ flair2,Multiclass_Jaccard_Index,0.492638885974884,flair2_205,5476a3801d5f449ba585fc6473c8f53d,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,16,1.4518986919464469e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
208
+ flair2,Multiclass_Jaccard_Index,0.4999808669090271,flair2_1829,5b1c518f22404da39871f98576c1376a,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,16,1.4518986919464469e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
209
+ flair2,Multiclass_Jaccard_Index,0.5131868124008179,flair2_2254,95e366099be140bd95156f8d71ff2c10,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,16,1.4518986919464469e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
210
+ flair2,Multiclass_Jaccard_Index,0.5013031363487244,flair2_2007,a72e987af7bb4aa38892b0e0e24aff39,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,16,1.4518986919464469e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
211
+ flair2,Multiclass_Jaccard_Index,0.5008986592292786,flair2_913,c2b858dd4ffc48d49d9ec3a356bfe233,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,16,1.4518986919464469e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
212
+ so2sat,Overall_Accuracy,0.5507099628448486,so2sat_2254,10d5e2f859bb49e9a6252b112f3ef092,FINISHED,2254,795717026824507105,final_main_clay_v1_base,0,32,1.4417679593699067e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
213
+ so2sat,Overall_Accuracy,0.5578093528747559,so2sat_913,1c0232ea31b34ad3bba5983612afbfeb,FINISHED,913,795717026824507105,final_main_clay_v1_base,0,32,1.4417679593699067e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
214
+ so2sat,Overall_Accuracy,0.568965494632721,so2sat_2007,5029b5bf18434ee9958318436284e1f2,FINISHED,2007,795717026824507105,final_main_clay_v1_base,0,32,1.4417679593699067e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
215
+ so2sat,Overall_Accuracy,0.5730223059654236,so2sat_1829,5733b4cd3632496fb824ada576e8ad98,FINISHED,1829,795717026824507105,final_main_clay_v1_base,0,32,1.4417679593699067e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
216
+ so2sat,Overall_Accuracy,0.5618661046028137,so2sat_205,f7d42ca5ada84507bb353e3644a74879,FINISHED,205,795717026824507105,final_main_clay_v1_base,0,32,1.4417679593699067e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
217
+ kuro_siwo,Multiclass_Jaccard_Index,0.6840789318084717,kuro_siwo_mean_1829,4c2be4598c644fd0b61c85b2d17ce145,FINISHED,1829,611310520608025673,final_main_clay_v1_base,0,32,1.069117674720793e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
218
+ kuro_siwo,Multiclass_Jaccard_Index,0.6429914236068726,kuro_siwo_mean_2254,4c6c31d9375441c3b086bdf090c8f48a,FINISHED,2254,611310520608025673,final_main_clay_v1_base,0,32,1.069117674720793e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
219
+ kuro_siwo,Multiclass_Jaccard_Index,0.6720964312553406,kuro_siwo_mean_2007,7bd0283d097a4358a55c28b26c2b0c50,FINISHED,2007,611310520608025673,final_main_clay_v1_base,0,32,1.069117674720793e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
220
+ kuro_siwo,Multiclass_Jaccard_Index,0.6733152866363525,kuro_siwo_mean_913,95587d8274b34a208e705d3388dd5c36,FINISHED,913,611310520608025673,final_main_clay_v1_base,0,32,1.069117674720793e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
221
+ kuro_siwo,Multiclass_Jaccard_Index,0.6832083463668823,kuro_siwo_mean_205,a681bef139c14037998046d381ec95a7,FINISHED,205,611310520608025673,final_main_clay_v1_base,0,32,1.069117674720793e-05,UNet,clay_v1_base,10.0,16,default,100,HPO,0.01,100%,full_ft
222
+ kuro_siwo,Multiclass_Jaccard_Index,0.6789531707763672,kuro_siwo_mean_2254,24a013f2b77e410580d24fe52254ca4e,FINISHED,2254,312067339846697973,final_main_terramind_v1_large,0,16,1.3485828940767237e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
223
+ kuro_siwo,Multiclass_Jaccard_Index,0.6908279657363892,kuro_siwo_mean_1829,43772c94fa25443eac7673c7333bc702,FINISHED,1829,312067339846697973,final_main_terramind_v1_large,0,16,1.3485828940767237e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
224
+ kuro_siwo,Multiclass_Jaccard_Index,0.6873027086257935,kuro_siwo_mean_2007,951baf4f4998489ba0b6069a3602f4b1,FINISHED,2007,312067339846697973,final_main_terramind_v1_large,0,16,1.3485828940767237e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
225
+ kuro_siwo,Multiclass_Jaccard_Index,0.6866209506988525,kuro_siwo_mean_205,a506606b93294a1685e36fe339d18780,FINISHED,205,312067339846697973,final_main_terramind_v1_large,0,16,1.3485828940767237e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
226
+ kuro_siwo,Multiclass_Jaccard_Index,0.6846413612365723,kuro_siwo_mean_913,ea3e86de5bce4b4ba6090546e9878756,FINISHED,913,312067339846697973,final_main_terramind_v1_large,0,16,1.3485828940767237e-05,UNet,terramind_v1_large,10.0,16,default,100,HPO,0.01,100%,full_ft
227
+ everwatch,test_test_map,0.2534341514110565,everwatch_3669,607ff8a988e045e68ae3e8e5145cc65e,FINISHED,3669,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.691840880402376e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
228
+ everwatch,test_test_map,0.2444937378168106,everwatch_1163,c4346300038844f3833248da7c14956c,FINISHED,1163,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.691840880402376e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
229
+ everwatch,test_test_map,0.2528373301029205,everwatch_2007,2e68a653c4b74fdbba13de6799990a3c,FINISHED,2007,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.691840880402376e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
230
+ everwatch,test_test_map,0.2408047318458557,everwatch_2254,71fd1a06ab684647bad3ca7142349d1f,FINISHED,2254,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.691840880402376e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
231
+ everwatch,test_test_map,0.245848074555397,everwatch_205,70dbe01088394f579c43f3d80e1357a1,FINISHED,205,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.691840880402376e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
232
+ nzcattle,test_test_map,0.3451495170593261,nzcattle_4020,aa483311d2714806b5cc2551f7a71388,FINISHED,4020,514820428842584591,final_object_detection_terramind_v1_large,0,8,2.150367200036458e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
233
+ nzcattle,test_test_map,0.3386348187923431,nzcattle_1180,d2d3ae07261f4d76ae875af0d00bf7fe,FINISHED,1180,514820428842584591,final_object_detection_terramind_v1_large,0,8,2.150367200036458e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
234
+ nzcattle,test_test_map,0.3409347534179687,nzcattle_3354,ccd565bb21f441a89e464e6e858fec64,FINISHED,3354,514820428842584591,final_object_detection_terramind_v1_large,0,8,2.150367200036458e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
235
+ nzcattle,test_test_map,0.3414294719696045,nzcattle_4871,442bc1da5b744dc6ad3e9086b0a84884,FINISHED,4871,514820428842584591,final_object_detection_terramind_v1_large,0,8,2.150367200036458e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
236
+ nzcattle,test_test_map,0.3391881287097931,nzcattle_1790,2d51ebefd6574536ae33c608f78d30c6,FINISHED,1790,514820428842584591,final_object_detection_terramind_v1_large,0,8,2.150367200036458e-05,faster-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
237
+ pastis_r,test_test_segm_map,0.1280479282140731,pastis_4313,32d0c674a3d6441b9cf0c6fea0cab306,FINISHED,4313,514820428842584591,final_object_detection_terramind_v1_large,0,8,5.2730296596573885e-05,mask-rcnn,terramind_v1_large,,4,default,100,Fixed,0.01,100%,full_ft
238
+ pastis_r,test_test_segm_map,0.1275206357240677,pastis_2125,67a62400fdba4d16ae11d7d6c40eda2f,FINISHED,2125,514820428842584591,final_object_detection_terramind_v1_large,0,8,5.2730296596573885e-05,mask-rcnn,terramind_v1_large,,4,default,100,Fixed,0.01,100%,full_ft
239
+ pastis_r,test_test_segm_map,0.1302018165588379,pastis_3576,fcff661e40d5465e9ea336968d594257,FINISHED,3576,514820428842584591,final_object_detection_terramind_v1_large,0,8,5.2730296596573885e-05,mask-rcnn,terramind_v1_large,,4,default,100,Fixed,0.01,100%,full_ft
240
+ pastis_r,test_test_segm_map,0.1362016499042511,pastis_1673,7f19707882684f55b36798dfb5f67023,FINISHED,1673,514820428842584591,final_object_detection_terramind_v1_large,0,8,5.2730296596573885e-05,mask-rcnn,terramind_v1_large,,4,default,100,Fixed,0.01,100%,full_ft
241
+ pastis_r,test_test_segm_map,0.126174196600914,pastis_1678,2c172aa30a9a4e9a8e09d80596e32eb8,FINISHED,1678,514820428842584591,final_object_detection_terramind_v1_large,0,8,5.2730296596573885e-05,mask-rcnn,terramind_v1_large,,4,default,100,Fixed,0.01,100%,full_ft
242
+ substation,test_test_segm_map,0.1580913513898849,substation_4764,f6fb3a1bc126438ab82ffec06d89c024,FINISHED,4764,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.394085192664972e-05,mask-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
243
+ substation,test_test_segm_map,0.1446995437145233,substation_1138,6e0e3224732341779ca67e34aeda5b0a,FINISHED,1138,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.394085192664972e-05,mask-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
244
+ substation,test_test_segm_map,0.1584698110818863,substation_1805,7f4f18d42461450693ea592ea630c97f,FINISHED,1805,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.394085192664972e-05,mask-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
245
+ substation,test_test_segm_map,0.1500434279441833,substation_4921,3f49d728a57c482e8bb9f59c25b5b10c,FINISHED,4921,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.394085192664972e-05,mask-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
246
+ substation,test_test_segm_map,0.1528779715299606,substation_1801,93ceb5f36f2644b0a4094fcf3bddbec6,FINISHED,1801,514820428842584591,final_object_detection_terramind_v1_large,0,8,3.394085192664972e-05,mask-rcnn,terramind_v1_large,,10,default,100,Fixed,0.01,100%,full_ft
247
+ everwatch,test_test_map,0.2631446421146393,everwatch_1829,3e9944e718034dcaa18fe5d32822bbdc,FINISHED,1829,605357125122862239,final_object_detection_clay_v1_base,0,8,7.652701145321595e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
248
+ everwatch,test_test_map,0.2578109502792358,everwatch_2007,dd5562d2693849f3b603df50366981ea,FINISHED,2007,605357125122862239,final_object_detection_clay_v1_base,0,8,7.652701145321595e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
249
+ everwatch,test_test_map,0.2597305476665497,everwatch_2254,6523f9dac5864b999dce1077947bafc4,FINISHED,2254,605357125122862239,final_object_detection_clay_v1_base,0,8,7.652701145321595e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
250
+ everwatch,test_test_map,0.2562801539897918,everwatch_205,ba802c3c038b428f8c07c4486347a50e,FINISHED,205,605357125122862239,final_object_detection_clay_v1_base,0,8,7.652701145321595e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
251
+ everwatch,test_test_map,0.263173758983612,everwatch_913,5a55f1a6fc9340c890341e77583d976b,FINISHED,913,605357125122862239,final_object_detection_clay_v1_base,0,8,7.652701145321595e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
252
+ nzcattle,test_test_map,0.3433267176151275,nzcattle_2878,cc9b58c831554391830ef770464d21a1,FINISHED,2878,605357125122862239,final_object_detection_clay_v1_base,0,8,3.675848053411779e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
253
+ nzcattle,test_test_map,0.3414545059204101,nzcattle_2088,c80129ed5b1540688ff3a0de0d0e423d,FINISHED,2088,605357125122862239,final_object_detection_clay_v1_base,0,8,3.675848053411779e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
254
+ nzcattle,test_test_map,0.3471623063087463,nzcattle_1420,17ca9f9a108d4fba8d2c9dd7774e4c35,FINISHED,1420,605357125122862239,final_object_detection_clay_v1_base,0,8,3.675848053411779e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
255
+ nzcattle,test_test_map,0.3390698134899139,nzcattle_1316,10862f77a83f4272bdeddcdcde84fa64,FINISHED,1316,605357125122862239,final_object_detection_clay_v1_base,0,8,3.675848053411779e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
256
+ nzcattle,test_test_map,0.3334003686904907,nzcattle_2898,f78d430daf7d4e198f3a40872d762bf4,FINISHED,2898,605357125122862239,final_object_detection_clay_v1_base,0,8,3.675848053411779e-05,faster-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
257
+ pastis_r,test_test_segm_map,0.1573373824357986,pastis_4287,6989719382474e31b7cd41827593983e,FINISHED,4287,605357125122862239,final_object_detection_clay_v1_base,0,8,0.000295799043128,mask-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
258
+ pastis_r,test_test_segm_map,0.1556365340948104,pastis_2044,acf176fbb38d41f5836dffd09221f78e,FINISHED,2044,605357125122862239,final_object_detection_clay_v1_base,0,8,0.000295799043128,mask-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
259
+ pastis_r,test_test_segm_map,0.1638926863670349,pastis_3626,e64ed324953245d9814fda1785f070cf,FINISHED,3626,605357125122862239,final_object_detection_clay_v1_base,0,8,0.000295799043128,mask-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
260
+ pastis_r,test_test_segm_map,0.1620885282754898,pastis_2880,128c077ccba54d06b53bd53d08bc16f3,FINISHED,2880,605357125122862239,final_object_detection_clay_v1_base,0,8,0.000295799043128,mask-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
261
+ pastis_r,test_test_segm_map,0.1555455029010772,pastis_1271,c81a2e84028c4bddae00e00cf60bf829,FINISHED,1271,605357125122862239,final_object_detection_clay_v1_base,0,8,0.000295799043128,mask-rcnn,clay_v1_base,,10,default,100,Fixed,0.01,100%,full_ft
262
+ substation,test_test_segm_map,0.198972001671791,substation_2899,2c2276e170c045ae90d8c0440f68fcfe,FINISHED,2899,605357125122862239,final_object_detection_clay_v1_base,0,8,4.9702442981039857e-05,mask-rcnn,clay_v1_base,,6,default,100,Fixed,0.01,100%,full_ft
263
+ substation,test_test_segm_map,0.1973665207624435,substation_1837,f930c9445ebf466c889344896f9ad3d4,FINISHED,1837,605357125122862239,final_object_detection_clay_v1_base,0,8,4.9702442981039857e-05,mask-rcnn,clay_v1_base,,6,default,100,Fixed,0.01,100%,full_ft
264
+ substation,test_test_segm_map,0.19160096347332,substation_2583,30832073123e4f18bd051cac5fbc513a,FINISHED,2583,605357125122862239,final_object_detection_clay_v1_base,0,8,4.9702442981039857e-05,mask-rcnn,clay_v1_base,,6,default,100,Fixed,0.01,100%,full_ft
265
+ substation,test_test_segm_map,0.1949329674243927,substation_4485,de389f4138c04a37a770a63c036f2094,FINISHED,4485,605357125122862239,final_object_detection_clay_v1_base,0,8,4.9702442981039857e-05,mask-rcnn,clay_v1_base,,6,default,100,Fixed,0.01,100%,full_ft
266
+ substation,test_test_segm_map,0.1865809261798858,substation_3778,361b1d2a4fc243c1868a4f7cf7761c29,FINISHED,3778,605357125122862239,final_object_detection_clay_v1_base,0,8,4.9702442981039857e-05,mask-rcnn,clay_v1_base,,6,default,100,Fixed,0.01,100%,full_ft
267
+ everwatch,test_test_map,0.2216494381427765,everwatch_664,8d1e47f96e634f42979e464052cdfbce,FINISHED,664,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,1.5772858997826887e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
268
+ everwatch,test_test_map,0.2342153042554855,everwatch_2007,8df959ba52f44fa69865555170eaa59a,FINISHED,2007,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,1.5772858997826887e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
269
+ everwatch,test_test_map,0.2346295565366745,everwatch_2254,25052567b1b5439bb8b327a090967a4c,FINISHED,2254,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,1.5772858997826887e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
270
+ everwatch,test_test_map,0.2428609728813171,everwatch_205,d2c28bfc9f59487480ed8a4bdf0a2e73,FINISHED,205,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,1.5772858997826887e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
271
+ everwatch,test_test_map,0.2463185787200927,everwatch_913,f8a4dbc6da5b49deac6c79fc5252c6d0,FINISHED,913,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,1.5772858997826887e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
272
+ nzcattle,test_test_map,0.3440934121608734,nzcattle_3375,3c78817882634a348e0b976417312b13,FINISHED,3375,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,3.682421948556654e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
273
+ nzcattle,test_test_map,0.3322223424911499,nzcattle_1120,5243544454c4457687bdf7ca5340837a,FINISHED,1120,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,3.682421948556654e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
274
+ nzcattle,test_test_map,0.3285744786262512,nzcattle_4742,c080c1aa72a04602b1d821fe53b26fe2,FINISHED,4742,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,3.682421948556654e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
275
+ nzcattle,test_test_map,0.3344000875949859,nzcattle_3847,68ee59823ac9428db537b49b575bc489,FINISHED,3847,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,3.682421948556654e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
276
+ nzcattle,test_test_map,0.337315559387207,nzcattle_4215,4e5fa5a126044620b07a59096d620b5d,FINISHED,4215,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,3.682421948556654e-05,faster-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
277
+ pastis_r,test_test_segm_map,0.1026935577392578,pastis_885,88c0de7d9ee848f29a28c4bde131b71e,FINISHED,885,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,0.0001740641909195,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
278
+ pastis_r,test_test_segm_map,0.0998783111572265,pastis_4188,67e76b5416974309846e9708fcf355bf,FINISHED,4188,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,0.0001740641909195,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
279
+ pastis_r,test_test_segm_map,0.1050681769847869,pastis_4067,b25cadfd6b7a48f886c48914d0a45f22,FINISHED,4067,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,0.0001740641909195,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
280
+ pastis_r,test_test_segm_map,0.1043741926550865,pastis_2609,06f19abc035d40da883c8b4087771b22,FINISHED,2609,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,0.0001740641909195,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
281
+ pastis_r,test_test_segm_map,0.1034035980701446,pastis_2098,2467fdaf645a45a98df442d2d6d1ccfe,FINISHED,2098,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,0.0001740641909195,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
282
+ substation,test_test_segm_map,0.1499142944812774,substation_3512,ec22279f62444ba1848325643a2d34ff,FINISHED,3512,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,2.7770838121582783e-05,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
283
+ substation,test_test_segm_map,0.1436789482831955,substation_2416,c4e30467f8da4cef859d32a5da79492c,FINISHED,2416,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,2.7770838121582783e-05,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
284
+ substation,test_test_segm_map,0.1456765234470367,substation_407,f05798af79c74a119dafda7600051afc,FINISHED,407,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,2.7770838121582783e-05,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
285
+ substation,test_test_segm_map,0.1477409899234771,substation_3559,4155d7a698ea4b8daa23b6b6de0c21a1,FINISHED,3559,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,2.7770838121582783e-05,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
286
+ substation,test_test_segm_map,0.1337875574827194,substation_3022,8511a4e01ee145cca3f19167b550276c,FINISHED,3022,735470102071628624,final_object_detection_dofa_large_patch16_224,0,8,2.7770838121582783e-05,mask-rcnn,dofa_large_patch16_224,,10,default,100,Fixed,0.01,100%,full_ft
results/80100fc6-dc1a-4514-b946-341157eaf816/additional_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Paper Link": "", "Code Repository Link ": "https://github.com/The-AI-Alliance/GEO-Bench-2", "License": "Apache 2.0", "Number of HPO trials": "10", "Number of repeated seeds trials": "5", "Additional information about submission": "These experiments were conducted as part of the release of the GEO-Bench-V2 datasets.", "Comments on new models in submission": "Describe any new models you have included which were not previously part of the leaderboard", "New model info": [{"model_display_name": "", "model_size": "", "unique_backbone_key": ""}]}
results/80100fc6-dc1a-4514-b946-341157eaf816/results_and_parameters.csv ADDED
The diff for this file is too large to render. See raw diff
 
results/compiled.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:664778491bc8bf64e436b9303d8221406666a620a40966dfc75f64e3f8af0f8d
3
+ size 131166
tests/.DS_Store ADDED
Binary file (6.15 kB). View file
 
tests/__init__.py ADDED
File without changes
tests/resources/.DS_Store ADDED
Binary file (6.15 kB). View file
 
tests/resources/inputs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
tests/resources/inputs/test_submission_1/results_and_parameters.csv ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset,Metric,experiment_name,partition name,backbone,decoder,batch_size_selection,early_stop_patience,n_trials,Seed,data_percentages,batch_size,weight_decay,lr,test metric
2
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4074,100%,8,0.376311714631646,8.49502710213644e-05,0.6672176122665405
3
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1897,100%,8,0.376311714631646,8.49502710213644e-05,0.6660189628601074
4
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1270,100%,8,0.376311714631646,8.49502710213644e-05,0.6640214920043945
5
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3768,100%,8,0.376311714631646,8.49502710213644e-05,0.6960753202438354
6
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3401,100%,8,0.376311714631646,8.49502710213644e-05,0.6873977184295654
7
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3224,100%,8,0.376311714631646,8.49502710213644e-05,0.6798655986785889
8
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2874,100%,8,0.376311714631646,8.49502710213644e-05,0.651594340801239
9
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3985,100%,8,0.376311714631646,8.49502710213644e-05,0.6867294311523438
10
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4143,100%,8,0.376311714631646,8.49502710213644e-05,0.665279746055603
11
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,52,100%,8,0.376311714631646,8.49502710213644e-05,0.6851502656936646
12
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1448,100%,32,0.0028238171171985,0.0009324538851647,0.3234341442584991
13
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,584,100%,32,0.0028238171171985,0.0009324538851647,0.3291504979133606
14
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1031,100%,32,0.0028238171171985,0.0009324538851647,0.3228558301925659
15
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2751,100%,32,0.0028238171171985,0.0009324538851647,0.3260976672172546
16
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3898,100%,32,0.0028238171171985,0.0009324538851647,0.3153356313705444
17
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1970,100%,32,0.0028238171171985,0.0009324538851647,0.3248571753501892
18
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,96,100%,32,0.0028238171171985,0.0009324538851647,0.3324618935585022
19
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2531,100%,32,0.0028238171171985,0.0009324538851647,0.3320326507091522
20
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2268,100%,32,0.0028238171171985,0.0009324538851647,0.315716028213501
21
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3222,100%,32,0.0028238171171985,0.0009324538851647,0.3328837752342224
22
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,199,100%,8,0.0635019082538137,0.0001077432627767,0.933402419090271
23
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4121,100%,8,0.0635019082538137,0.0001077432627767,0.9397921562194824
24
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2249,100%,8,0.0635019082538137,0.0001077432627767,0.9408209323883056
25
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3809,100%,8,0.0635019082538137,0.0001077432627767,0.938472330570221
26
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,85,100%,8,0.0635019082538137,0.0001077432627767,0.939550518989563
27
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,780,100%,8,0.0635019082538137,0.0001077432627767,0.939792811870575
28
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1094,100%,8,0.0635019082538137,0.0001077432627767,0.9387277364730836
29
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2316,100%,8,0.0635019082538137,0.0001077432627767,0.938027560710907
30
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2244,100%,8,0.0635019082538137,0.0001077432627767,0.935537576675415
31
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1350,100%,8,0.0635019082538137,0.0001077432627767,0.9421088695526124
32
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1511,100%,8,0.1162518746995334,0.0009977774835077,0.9161623120307922
33
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2020,100%,8,0.1162518746995334,0.0009977774835077,0.7651582956314087
34
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2860,100%,8,0.1162518746995334,0.0009977774835077,0.7665423154830933
35
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3835,100%,8,0.1162518746995334,0.0009977774835077,0.9021945595741272
36
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1192,100%,8,0.1162518746995334,0.0009977774835077,0.9094558954238892
37
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2281,100%,8,0.1162518746995334,0.0009977774835077,0.890521228313446
38
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1968,100%,8,0.1162518746995334,0.0009977774835077,0.7655184268951416
39
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,218,100%,8,0.1162518746995334,0.0009977774835077,0.7658498883247375
40
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2115,100%,8,0.1162518746995334,0.0009977774835077,0.8599324226379395
41
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3423,100%,8,0.1162518746995334,0.0009977774835077,0.9091439843177797
42
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2509,100%,8,0.0983399202983907,0.0009153563094797,0.5734111666679382
43
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3987,100%,8,0.0983399202983907,0.0009153563094797,0.559952974319458
44
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3921,100%,8,0.0983399202983907,0.0009153563094797,0.5713885426521301
45
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,47,100%,8,0.0983399202983907,0.0009153563094797,0.5674113631248474
46
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,585,100%,8,0.0983399202983907,0.0009153563094797,0.5748375654220581
47
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2217,100%,8,0.0983399202983907,0.0009153563094797,0.570099949836731
48
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,288,100%,8,0.0983399202983907,0.0009153563094797,0.5726335048675537
49
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4135,100%,8,0.0983399202983907,0.0009153563094797,0.5661790370941162
50
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3220,100%,8,0.0983399202983907,0.0009153563094797,0.5695707201957703
51
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1504,100%,8,0.0983399202983907,0.0009153563094797,0.5611818432807922
52
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,515,100%,16,0.2992355570741097,0.0005669541997516,0.8232710361480713
53
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1577,100%,16,0.2992355570741097,0.0005669541997516,0.8244178295135498
54
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2509,100%,16,0.2992355570741097,0.0005669541997516,0.8250547647476196
55
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1281,100%,16,0.2992355570741097,0.0005669541997516,0.8269679546356201
56
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2456,100%,16,0.2992355570741097,0.0005669541997516,0.8278542160987854
57
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,2575,100%,16,0.2992355570741097,0.0005669541997516,0.8266293406486511
58
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4495,100%,16,0.2992355570741097,0.0005669541997516,0.8163466453552246
59
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,3347,100%,16,0.2992355570741097,0.0005669541997516,0.8090845346450806
60
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,1611,100%,16,0.2992355570741097,0.0005669541997516,0.8216108083724976
61
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,smp_Unet,optimized,50,16,4208,100%,16,0.2992355570741097,0.0005669541997516,0.8205042481422424
62
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,799,100%,32,0.0845698013691995,7.095358602186485e-05,0.7135563492774963
63
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,339,100%,32,0.0845698013691995,7.095358602186485e-05,0.7104905843734741
64
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4739,100%,32,0.0845698013691995,7.095358602186485e-05,0.688521146774292
65
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4036,100%,32,0.0845698013691995,7.095358602186485e-05,0.7167086601257324
66
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3312,100%,32,0.0845698013691995,7.095358602186485e-05,0.715383768081665
67
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2740,100%,32,0.0845698013691995,7.095358602186485e-05,0.7025712728500366
68
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3843,100%,32,0.0845698013691995,7.095358602186485e-05,0.6929353475570679
69
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4613,100%,32,0.0845698013691995,7.095358602186485e-05,0.7135555744171143
70
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2118,100%,32,0.0845698013691995,7.095358602186485e-05,0.7066311836242676
71
+ chesapeake,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1998,100%,32,0.0845698013691995,7.095358602186485e-05,0.7069718241691589
72
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1273,100%,32,0.3169093481136426,0.0002803700277342,0.331969290971756
73
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4369,100%,32,0.3169093481136426,0.0002803700277342,0.3571399450302124
74
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4295,100%,32,0.3169093481136426,0.0002803700277342,0.3499228954315185
75
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3719,100%,32,0.3169093481136426,0.0002803700277342,0.3375613093376159
76
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4980,100%,32,0.3169093481136426,0.0002803700277342,0.3444221615791321
77
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3926,100%,32,0.3169093481136426,0.0002803700277342,0.3480183482170105
78
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,523,100%,32,0.3169093481136426,0.0002803700277342,0.3338068127632141
79
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3132,100%,32,0.3169093481136426,0.0002803700277342,0.3421605825424194
80
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,268,100%,32,0.3169093481136426,0.0002803700277342,0.3521450757980346
81
+ sa_crop_type,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1294,100%,32,0.3169093481136426,0.0002803700277342,0.3380949795246124
82
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2853,100%,32,0.2806807709516379,0.0001561962879473,0.9402685165405272
83
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,921,100%,32,0.2806807709516379,0.0001561962879473,0.935638189315796
84
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2885,100%,32,0.2806807709516379,0.0001561962879473,0.9274752140045166
85
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1833,100%,32,0.2806807709516379,0.0001561962879473,0.9409592151641846
86
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2434,100%,32,0.2806807709516379,0.0001561962879473,0.942594826221466
87
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4523,100%,32,0.2806807709516379,0.0001561962879473,0.9272408485412598
88
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1074,100%,32,0.2806807709516379,0.0001561962879473,0.9365390539169312
89
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2695,100%,32,0.2806807709516379,0.0001561962879473,0.9388547539711
90
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3339,100%,32,0.2806807709516379,0.0001561962879473,0.9340709447860718
91
+ pv4ger_seg,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,778,100%,32,0.2806807709516379,0.0001561962879473,0.9414107799530028
92
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,391,100%,8,0.1872029616850694,0.0001583623070717,0.8811582922935486
93
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,125,100%,8,0.1872029616850694,0.0001583623070717,0.7500208616256714
94
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1471,100%,8,0.1872029616850694,0.0001583623070717,0.7552796006202698
95
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,185,100%,8,0.1872029616850694,0.0001583623070717,0.7548510432243347
96
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3220,100%,8,0.1872029616850694,0.0001583623070717,0.8831520676612854
97
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1477,100%,8,0.1872029616850694,0.0001583623070717,0.7554706335067749
98
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,27,100%,8,0.1872029616850694,0.0001583623070717,0.8891997337341309
99
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3893,100%,8,0.1872029616850694,0.0001583623070717,0.7583714723587036
100
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3109,100%,8,0.1872029616850694,0.0001583623070717,0.74748694896698
101
+ cashew,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1561,100%,8,0.1872029616850694,0.0001583623070717,0.7510426640510559
102
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,339,100%,8,0.0958805157666471,0.0006669639988907,0.567497730255127
103
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1119,100%,8,0.0958805157666471,0.0006669639988907,0.5694387555122375
104
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1598,100%,8,0.0958805157666471,0.0006669639988907,0.5681214928627014
105
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,59,100%,8,0.0958805157666471,0.0006669639988907,0.5635424852371216
106
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,299,100%,8,0.0958805157666471,0.0006669639988907,0.5690293312072754
107
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3969,100%,8,0.0958805157666471,0.0006669639988907,0.5734402537345886
108
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1335,100%,8,0.0958805157666471,0.0006669639988907,0.5750075578689575
109
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1205,100%,8,0.0958805157666471,0.0006669639988907,0.5757657289505005
110
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1984,100%,8,0.0958805157666471,0.0006669639988907,0.5712120532989502
111
+ neontree,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1387,100%,8,0.0958805157666471,0.0006669639988907,0.5796757936477661
112
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2986,100%,32,0.2406274751665054,0.0007374796618441,0.8232717514038086
113
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3692,100%,32,0.2406274751665054,0.0007374796618441,0.8008925914764404
114
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2829,100%,32,0.2406274751665054,0.0007374796618441,0.8172112107276917
115
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,3583,100%,32,0.2406274751665054,0.0007374796618441,0.8212674856185913
116
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4245,100%,32,0.2406274751665054,0.0007374796618441,0.8171231746673584
117
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4544,100%,32,0.2406274751665054,0.0007374796618441,0.8219597339630127
118
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,1204,100%,32,0.2406274751665054,0.0007374796618441,0.8255108594894409
119
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,15,100%,32,0.2406274751665054,0.0007374796618441,0.8165488243103027
120
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,4111,100%,32,0.2406274751665054,0.0007374796618441,0.8116637468338013
121
+ nz_cattle,Multiclass_Jaccard_Index,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_smp_unet,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,smp_Unet,optimized,50,16,2099,100%,32,0.2406274751665054,0.0007374796618441,0.7985596060752869
122
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4565,100%,32,0.0483818466583478,0.0009007718997571,0.9809809923171996
123
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4322,100%,32,0.0483818466583478,0.0009007718997571,0.9739739894866944
124
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4148,100%,32,0.0483818466583478,0.0009007718997571,0.9819819927215576
125
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,16,100%,32,0.0483818466583478,0.0009007718997571,0.977977991104126
126
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3799,100%,32,0.0483818466583478,0.0009007718997571,0.9679679870605468
127
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4370,100%,32,0.0483818466583478,0.0009007718997571,0.9719719886779784
128
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4217,100%,32,0.0483818466583478,0.0009007718997571,0.9739739894866944
129
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2748,100%,32,0.0483818466583478,0.0009007718997571,0.978978991508484
130
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4964,100%,32,0.0483818466583478,0.0009007718997571,0.9729729890823364
131
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,145,100%,32,0.0483818466583478,0.0009007718997571,0.9589589834213256
132
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1582,100%,16,0.1420142212351907,6.484318042499172e-05,0.517241358757019
133
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3140,100%,16,0.1420142212351907,6.484318042499172e-05,0.568965494632721
134
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1849,100%,16,0.1420142212351907,6.484318042499172e-05,0.5557809472084045
135
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1966,100%,16,0.1420142212351907,6.484318042499172e-05,0.5030425786972046
136
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3231,100%,16,0.1420142212351907,6.484318042499172e-05,0.5425963401794434
137
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2190,100%,16,0.1420142212351907,6.484318042499172e-05,0.5486815571784973
138
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4762,100%,16,0.1420142212351907,6.484318042499172e-05,0.5679513216018677
139
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3672,100%,16,0.1420142212351907,6.484318042499172e-05,0.5415821671485901
140
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1329,100%,16,0.1420142212351907,6.484318042499172e-05,0.5446247458457947
141
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1399,100%,16,0.1420142212351907,6.484318042499172e-05,0.5334685444831848
142
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3310,100%,32,0.0016925260317968,6.455143990010064e-05,0.9869869947433472
143
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,535,100%,32,0.0016925260317968,6.455143990010064e-05,0.9819819927215576
144
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,562,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
145
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1753,100%,32,0.0016925260317968,6.455143990010064e-05,0.9849849939346312
146
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2622,100%,32,0.0016925260317968,6.455143990010064e-05,0.9649649858474731
147
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,814,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
148
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,237,100%,32,0.0016925260317968,6.455143990010064e-05,0.9839839935302734
149
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1307,100%,32,0.0016925260317968,6.455143990010064e-05,0.9859859943389891
150
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4435,100%,32,0.0016925260317968,6.455143990010064e-05,0.9809809923171996
151
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4089,100%,32,0.0016925260317968,6.455143990010064e-05,0.9839839935302734
152
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4838,100%,32,0.2103480107442391,6.471079283583433e-05,0.6599027514457703
153
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,713,100%,32,0.2103480107442391,6.471079283583433e-05,0.6716534495353699
154
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4468,100%,32,0.2103480107442391,6.471079283583433e-05,0.6648851037025452
155
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,840,100%,32,0.2103480107442391,6.471079283583433e-05,0.6675868034362793
156
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1144,100%,32,0.2103480107442391,6.471079283583433e-05,0.6821687817573547
157
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1829,100%,32,0.2103480107442391,6.471079283583433e-05,0.6789093017578125
158
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2007,100%,32,0.2103480107442391,6.471079283583433e-05,0.6702918410301208
159
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2254,100%,32,0.2103480107442391,6.471079283583433e-05,0.6647154688835144
160
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,205,100%,32,0.2103480107442391,6.471079283583433e-05,0.6651250123977661
161
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,913,100%,32,0.2103480107442391,6.471079283583433e-05,0.6596580743789673
162
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3130,100%,32,0.290578170946364,8.388751435377213e-05,0.9739999771118164
163
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1220,100%,32,0.290578170946364,8.388751435377213e-05,0.9629999995231628
164
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1188,100%,32,0.290578170946364,8.388751435377213e-05,0.962000012397766
165
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2923,100%,32,0.290578170946364,8.388751435377213e-05,0.9700000286102296
166
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2033,100%,32,0.290578170946364,8.388751435377213e-05,0.968999981880188
167
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,445,100%,32,0.290578170946364,8.388751435377213e-05,0.972000002861023
168
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2729,100%,32,0.290578170946364,8.388751435377213e-05,0.9679999947547911
169
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3499,100%,32,0.290578170946364,8.388751435377213e-05,0.962000012397766
170
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1144,100%,32,0.290578170946364,8.388751435377213e-05,0.9679999947547911
171
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,2902,100%,32,0.290578170946364,8.388751435377213e-05,0.9739999771118164
172
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,707,100%,16,0.3941167807260976,0.0002822095144255,0.4521651566028595
173
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3382,100%,16,0.3941167807260976,0.0002822095144255,0.4692849814891815
174
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4829,100%,16,0.3941167807260976,0.0002822095144255,0.448136955499649
175
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4496,100%,16,0.3941167807260976,0.0002822095144255,0.4360523521900177
176
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,4976,100%,16,0.3941167807260976,0.0002822095144255,0.4189325273036957
177
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1421,100%,16,0.3941167807260976,0.0002822095144255,0.4269889295101166
178
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3807,100%,16,0.3941167807260976,0.0002822095144255,0.4390735030174255
179
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3103,100%,16,0.3941167807260976,0.0002822095144255,0.4491440057754516
180
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,1716,100%,16,0.3941167807260976,0.0002822095144255,0.4471299052238464
181
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_dino_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_dino,IdentityDecoder,optimized,50,16,3421,100%,16,0.3941167807260976,0.0002822095144255,0.4290030300617218
182
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1006,100%,16,0.0233859235441379,0.0008743862145496,0.9689689874649048
183
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,855,100%,16,0.0233859235441379,0.0008743862145496,0.9759759902954102
184
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,274,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
185
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3967,100%,16,0.0233859235441379,0.0008743862145496,0.966966986656189
186
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1261,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
187
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3907,100%,16,0.0233859235441379,0.0008743862145496,0.977977991104126
188
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,507,100%,16,0.0233859235441379,0.0008743862145496,0.9699699878692628
189
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4890,100%,16,0.0233859235441379,0.0008743862145496,0.9739739894866944
190
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,821,100%,16,0.0233859235441379,0.0008743862145496,0.9729729890823364
191
+ pv4ger,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,897,100%,16,0.0233859235441379,0.0008743862145496,0.9759759902954102
192
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2709,100%,8,0.2143980952203471,7.678537962381587e-05,0.546653151512146
193
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4385,100%,8,0.2143980952203471,7.678537962381587e-05,0.523326575756073
194
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2334,100%,8,0.2143980952203471,7.678537962381587e-05,0.5537525415420532
195
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2296,100%,8,0.2143980952203471,7.678537962381587e-05,0.563894510269165
196
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2335,100%,8,0.2143980952203471,7.678537962381587e-05,0.540567934513092
197
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4220,100%,8,0.2143980952203471,7.678537962381587e-05,0.5567951202392578
198
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,600,100%,8,0.2143980952203471,7.678537962381587e-05,0.5415821671485901
199
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4085,100%,8,0.2143980952203471,7.678537962381587e-05,0.5081135630607605
200
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3605,100%,8,0.2143980952203471,7.678537962381587e-05,0.4898580014705658
201
+ so2sat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4851,100%,8,0.2143980952203471,7.678537962381587e-05,0.5578093528747559
202
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2466,100%,32,0.0241049339778712,0.0006317522129654,0.9809809923171996
203
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2541,100%,32,0.0241049339778712,0.0006317522129654,0.9829829931259156
204
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2246,100%,32,0.0241049339778712,0.0006317522129654,0.978978991508484
205
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,132,100%,32,0.0241049339778712,0.0006317522129654,0.9689689874649048
206
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1691,100%,32,0.0241049339778712,0.0006317522129654,0.9729729890823364
207
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1696,100%,32,0.0241049339778712,0.0006317522129654,0.9799799919128418
208
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2224,100%,32,0.0241049339778712,0.0006317522129654,0.9799799919128418
209
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4222,100%,32,0.0241049339778712,0.0006317522129654,0.9809809923171996
210
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1077,100%,32,0.0241049339778712,0.0006317522129654,0.9739739894866944
211
+ brick_kiln,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3614,100%,32,0.0241049339778712,0.0006317522129654,0.95695698261261
212
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4838,100%,32,0.0006609967274643,0.0001244735178777,0.6715825200080872
213
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,713,100%,32,0.0006609967274643,0.0001244735178777,0.6624463200569153
214
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4468,100%,32,0.0006609967274643,0.0001244735178777,0.6741133332252502
215
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,840,100%,32,0.0006609967274643,0.0001244735178777,0.6756007671356201
216
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1144,100%,32,0.0006609967274643,0.0001244735178777,0.6727983355522156
217
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1829,100%,32,0.0006609967274643,0.0001244735178777,0.6618573069572449
218
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2007,100%,32,0.0006609967274643,0.0001244735178777,0.6743751168251038
219
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2254,100%,32,0.0006609967274643,0.0001244735178777,0.6706086993217468
220
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,205,100%,32,0.0006609967274643,0.0001244735178777,0.6765933632850647
221
+ big_earth_net,Multilabel_F1_Score,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,913,100%,32,0.0006609967274643,0.0001244735178777,0.6776209473609924
222
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1698,100%,16,0.1849003044425631,0.0001063634870237,0.9539999961853028
223
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3146,100%,16,0.1849003044425631,0.0001063634870237,0.9539999961853028
224
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4144,100%,16,0.1849003044425631,0.0001063634870237,0.9639999866485596
225
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3064,100%,16,0.1849003044425631,0.0001063634870237,0.9660000205039978
226
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2803,100%,16,0.1849003044425631,0.0001063634870237,0.9430000185966492
227
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1624,100%,16,0.1849003044425631,0.0001063634870237,0.9760000109672546
228
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,614,100%,16,0.1849003044425631,0.0001063634870237,0.9559999704360962
229
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2735,100%,16,0.1849003044425631,0.0001063634870237,0.9580000042915344
230
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2931,100%,16,0.1849003044425631,0.0001063634870237,0.9639999866485596
231
+ eurosat,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2808,100%,16,0.1849003044425631,0.0001063634870237,0.9480000138282776
232
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,272,100%,32,0.0028788214595454,6.027942222485105e-05,0.4803625345230102
233
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,719,100%,32,0.0028788214595454,6.027942222485105e-05,0.5075528621673584
234
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,2115,100%,32,0.0028788214595454,6.027942222485105e-05,0.5629405975341797
235
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,4503,100%,32,0.0028788214595454,6.027942222485105e-05,0.5156092643737793
236
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,940,100%,32,0.0028788214595454,6.027942222485105e-05,0.5276938676834106
237
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3361,100%,32,0.0028788214595454,6.027942222485105e-05,0.5236656665802002
238
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,543,100%,32,0.0028788214595454,6.027942222485105e-05,0.5085599422454834
239
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1667,100%,32,0.0028788214595454,6.027942222485105e-05,0.5357502698898315
240
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,1312,100%,32,0.0028788214595454,6.027942222485105e-05,0.52064448595047
241
+ forestnet,Overall_Accuracy,early_stopping_50_data_100_perc_ssl4eos12_resnet50_sentinel2_all_decur_true,1.00x train,ssl4eos12_resnet50_sentinel2_all_decur,IdentityDecoder,optimized,50,16,3415,100%,32,0.0028788214595454,6.027942222485105e-05,0.5287008881568909
tests/resources/outputs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
tests/resources/outputs/test_output.pkl ADDED
Binary file (26.9 kB). View file
 
tests/test_compile_results.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ from pathlib import Path
3
+ import pandas as pd
4
+ from typing import Dict
5
+ import pickle
6
+ from utils.compile_results import *
7
+ from utils.constants import NORM_BASE_SUBMISSION
8
+
9
+ root = Path(__file__).parent.resolve()
10
+ root = str(root)
11
+
12
+ SUBMISSION_NAMES = ['test_submission_1']
13
+ MODEL_NAMES = ["ssl4eos12_resnet50_sentinel2_all_decur","ssl4eos12_resnet50_sentinel2_all_dino"]
14
+
15
+
16
+ @pytest.fixture
17
+ def expected_output():
18
+ with open(f"{root}/resources/outputs/test_output.pkl", 'rb') as handle:
19
+ expected_results = pickle.load(handle)
20
+ return expected_results
21
+
22
+
23
+ class TestLoading:
24
+ all_submission_results, all_model_names, all_submissions = load_results(folder=f"{root}/resources/inputs")
25
+ def test_submission_results(self):
26
+ for _, value in self.all_submission_results.items():
27
+ assert "results" in value
28
+ assert type(value["results"]) == pd.DataFrame
29
+
30
+ columns_to_be_added = {"# params", "Model", "Config Settings"}
31
+ existing_columns = set(value["results"].columns)
32
+ assert columns_to_be_added.issubset(existing_columns)
33
+
34
+ def test_model_names(self):
35
+ assert sorted(self.all_model_names) == sorted(MODEL_NAMES)
36
+
37
+ def test_submission_names(self):
38
+ assert sorted(self.all_submissions) == SUBMISSION_NAMES
39
+
40
+
41
+
42
+ class TestComputeResults:
43
+ #compute output
44
+ all_submission_results, all_model_names, all_submissions = load_results(folder=f"{root}/resources/inputs")
45
+ benchmark_name = f"leaderboard_{NORM_BASE_SUBMISSION}_main"
46
+ all_iqms = compute_all_iqms(all_submission_results = all_submission_results,
47
+ benchmark_name = benchmark_name
48
+ )
49
+ overall_performance_tables = get_overall_performance_table(all_submission_results=all_submission_results,
50
+ all_iqms=all_iqms)
51
+ performance_by_dimension_tables = get_performance_by_dimension_table(all_submission_results=all_submission_results,
52
+ all_iqms=all_iqms)
53
+ datasets_tables = get_datasets_tables(all_submission_results=all_submission_results,
54
+ all_iqms=all_iqms)
55
+
56
+ def test_compute_all_iqms(self, expected_output):
57
+ assert sorted(self.all_iqms.keys()) == sorted(self.all_submission_results.keys())
58
+ assert "overall_performance_tables" in expected_output
59
+
60
+ for submission, submission_value in self.all_iqms.items():
61
+ assert sorted(submission_value.keys()) == sorted(expected_output["all_iqms"][submission].keys())#sorted(ALL_TABLES)
62
+
63
+ for table_name, table in submission_value.items():
64
+ #print(f"{table_name}: {type(table) == pd.DataFrame}")
65
+ #print(f"table.columns: {table.columns}")
66
+ #print(f"expected_output['all_iqms'][submission][table_name]{expected_output['all_iqms'][submission][table_name].columns}")
67
+ assert type(table) == pd.DataFrame
68
+ #assert table.equals(expected_output["all_iqms"][submission][table_name])
69
+
70
+
71
+
72
+ def test_raw_values(self):
73
+ assert "raw" in self.overall_performance_tables
74
+ #dataset values
75
+ #overall values
76
+ #dimension values
77
+
78
+ def test_normalized_values(self):
79
+ assert "normalized" in self.overall_performance_tables
80
+ #dataset values
81
+ #overall values
82
+ #dimension values
83
+ pass
utils/.DS_Store ADDED
Binary file (6.15 kB). View file
 
utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import *
utils/about_page.txt ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Create New Submission Directory
2
+ Create a new folder in the `new_submission` top directory:
3
+ ```bash
4
+ geobench_leaderboard/
5
+ └── new_submission/
6
+ ├── results_and_parameters.csv
7
+ ├── additional_info.json
8
+ ```
9
+
10
+ ### 2. Add Results and Parameters Details
11
+
12
+ Add a CSV file (`results_and_parameters.csv`) with the columns below. Please note that if terratorch-iterate is used for experiments, this table may be created automatically upon completion of an experiment. Please see https://github.com/The-AI-Alliance/GEO-Bench-Leaderboard for more:
13
+ - `backbone`: backbone used for experiment, (e.g. Prithvi-EO-V2 600M)
14
+ - `dataset`: some or all of the GEO-bench datasets. Please see Info page to learn more.
15
+ - `Metric`: the type of metric used for evaluation. Depending on the dataset, this may be one of the following: `Overall_Accuracy`, `Multilabel_F1_Score`, `Multiclass_Jaccard_Index`
16
+ - `experiment_name`: if terratorch-iterate used, this will the experiment_name used in mlflow. Otherwise, a unique name may be used for all results relating to a single backbone
17
+ - `batch_size_selection`: denotes whether the batch size was fixed during hyperparameter optimization. May be `fixed` or `optimized`
18
+ - `early_stop_patience`: early stopping patience using for trainer
19
+ - `n_trials`: number of trials used for hyperparameter optimization
20
+ - `Seed`: random seed used for repeated experiment. 10 random seeds must be used for each
21
+ - `batch_size`: batch size used for repeated experiments for each backbone/dataset combination.
22
+ - `weight_decay`: weight decay experiments for each backbone/dataset combination.
23
+ - `lr`: learning rate used for repeated experiments for each backbone/dataset combination. Obtained from hyperparameter optimization (HPO)
24
+ - `test metric`: metric obtained from running backbone on the dataset during repeated experiment. Please see Info page to learn more.
25
+
26
+
27
+
28
+ ### 3. Add Additional Information
29
+ Create a JSON file (`additional_info.json`) with information about your submission and any new models that will be included.
30
+ The JSON file MUST have the same file name and contain the same keys as the `examples/additional_info.json` file.
31
+
32
+
33
+ ### 4. Submit PR
34
+
35
+ 1. Fork the repository
36
+ 2. Add your results following the structure above and in the PR comments add more details about your submission
37
+ 3. Create a pull request to main
38
+
utils/compile_results.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import re
3
+ import os
4
+
5
+ import pandas as pd
6
+ import numpy as np
7
+ import pickle
8
+
9
+ from urllib.parse import quote
10
+ from pathlib import Path
11
+ import re
12
+ import html
13
+ from typing import Dict, Any
14
+ from scipy.stats import sem
15
+
16
+ from utils.constants import (NORM_BASE_SUBMISSION, DATASETS, DIGITS_FOR_VALUES, DIGITS_FOR_ERRORS,
17
+ DIMENSIONS, COLUMN_ORDER, MODEL_INFO_FILE, RESULTS_DIR)
18
+ from utils import compute_tools
19
+
20
+
21
+
22
+ def load_results(folder: str = RESULTS_DIR,
23
+ items_to_ignore: list = ["__pycache__", "compiled.pkl", ".DS_Store"]
24
+ ):
25
+ """
26
+ loads results from results folder.
27
+
28
+ Args:
29
+ folder: folder containing results
30
+ items_to_ignore: list of items in results folder to ignore
31
+ """
32
+ #read model info
33
+ with open(MODEL_INFO_FILE) as f:
34
+ model_info = json.load(f)
35
+ model_size = model_info["MODEL_SIZE"]
36
+ backbone_names = model_info["BACKBONE_NAMES"]
37
+
38
+ #read submission info
39
+ all_submissions = os.listdir(folder)
40
+ for item in items_to_ignore:
41
+ if item in all_submissions: all_submissions.remove(item)
42
+
43
+ all_submission_results = {}
44
+ #TODO: add some info to json files and read here also
45
+ all_full_ft_model_names = []
46
+ all_frozen_model_names = []
47
+ all_submission_results["frozen"] = {}
48
+ all_submission_results["full_ft"] = {}
49
+ for submission in all_submissions:
50
+ combined_results = pd.read_csv(f"{folder}/{submission}/results_and_parameters.csv")
51
+ combined_results = combined_results.drop(["index"], errors='ignore')
52
+ try:
53
+ frozen_or_full_ft = combined_results["frozen_or_full_ft"][0]
54
+ except KeyError as e:
55
+ KeyError(f"{combined_results=}")
56
+ all_submission_results[frozen_or_full_ft][submission] = {}
57
+
58
+ combined_results["# params"] = combined_results.apply(lambda row: model_size[row.backbone], axis=1)
59
+ combined_results["Model"] = combined_results.apply(lambda row: backbone_names[row.backbone], axis=1)
60
+ combined_results["Config Settings"] = combined_results.apply(lambda row: get_config_setting_string(row), axis=1)
61
+
62
+ #TODO: read json info
63
+ all_backbones = list(set(combined_results["backbone"].tolist()))
64
+ all_submission_results[frozen_or_full_ft][submission]["results"] = combined_results
65
+ all_submission_results[frozen_or_full_ft][submission]["all_backbones"] = all_backbones
66
+
67
+ config_settings = combined_results[["early_stop_patience", "decoder", "n_trials", "data_percentages", "batch_size_selection"]].iloc[0]
68
+ config_settings = config_settings.replace("early_stopping_50", "50").replace("n_trials_16", "16").replace("data_100_perc", "100")
69
+ all_submission_results[frozen_or_full_ft][submission]["config_info"] = config_settings
70
+
71
+ #all_submission_results[submission]["json_info"] = json_info
72
+ if frozen_or_full_ft =="frozen":
73
+ all_frozen_model_names.extend(all_backbones)
74
+ else:
75
+ all_full_ft_model_names.extend(all_backbones)
76
+
77
+ all_frozen_model_names = list(set(all_frozen_model_names))
78
+ all_full_ft_model_names = list(set(all_full_ft_model_names))
79
+ all_model_names = {"full_ft": all_full_ft_model_names, "frozen": all_frozen_model_names}
80
+ return all_submission_results, all_model_names, all_submissions
81
+
82
+
83
+
84
+ def compute_all_iqms(
85
+ all_submission_results: dict,
86
+ benchmark_name: str,
87
+ dataset_group_keys:list =["backbone", "dataset"],
88
+ overall_group_keys:list = ["backbone"],
89
+ metric:str ="test metric",
90
+ ) -> Dict:
91
+ """
92
+ - reads combined results from repeated seeds for multiple models
93
+ - computes the raw and normalized IQM by dataset for each model by task type
94
+ - computes the raw and normalized overall IQM across multiple datasets in each each task type
95
+
96
+ Args:
97
+ all_submission_results: dict containing all results
98
+ benchmark_name: name of normalizer file to be used
99
+ dataset_group_keys: grouping for computing dataset IQM
100
+ overall_group_keys: grouping for computing overall IQM
101
+ metric: the column containing scores/values in the combined results tables
102
+ """
103
+ output = {}
104
+ for submission in all_submission_results:
105
+ output[submission] = {}
106
+ print(f'\n\n\n{submission=}')
107
+ submission_backbones = all_submission_results[submission]["all_backbones"]
108
+
109
+ #TODO: remove
110
+ partition_name = "0.10x train" if "data_10_perc" in submission else "1.00x train"
111
+ submission_results = all_submission_results[submission]["results"]
112
+ if not "partition name" in list(submission_results.columns):
113
+ submission_results["partition name"] = partition_name
114
+ submission_results["partition name"] = partition_name
115
+
116
+ #get raw values per dataset
117
+ series = submission_results.groupby(dataset_group_keys)[metric].apply(np.mean)
118
+ raw_per_dataset = series.to_frame().reset_index()
119
+ raw_per_dataset = raw_per_dataset.drop(columns=["partition name"], errors='ignore')
120
+ included_datsets = [d for d in DATASETS if d in set(raw_per_dataset["dataset"])]
121
+ raw_per_dataset_final = pd.DataFrame(columns=["backbone"] + included_datsets)
122
+
123
+ #get raw errors per dataset
124
+ series = submission_results.groupby(dataset_group_keys)[metric].apply(sem)
125
+ raw_per_dataset_err = series.to_frame().reset_index()
126
+ raw_per_dataset_err = raw_per_dataset_err.drop(columns=["partition name"], errors='ignore')
127
+ raw_per_dataset_final_err = pd.DataFrame(columns=["backbone"] + included_datsets)
128
+
129
+ #rearrange
130
+ for backbone in submission_backbones:
131
+ #get values
132
+ data = raw_per_dataset.loc[raw_per_dataset["backbone"] == backbone]
133
+ data = data.drop(columns=["backbone"]).rename(columns={metric: backbone, "dataset": "backbone"})
134
+ data = data.set_index(['backbone']).T.reset_index()
135
+ data = data.rename(columns={"index": "backbone"})
136
+ try:
137
+ data = data.loc[:, ["backbone"] + included_datsets]
138
+ except KeyError as e:
139
+ print(f'{backbone} {e=}')
140
+ continue
141
+
142
+ raw_per_dataset_final = data.copy() if len(raw_per_dataset_final.index)==0 else pd.concat([raw_per_dataset_final, data], ignore_index=True)
143
+
144
+ #get errors
145
+ data_err = raw_per_dataset_err.loc[raw_per_dataset_err["backbone"] == backbone]
146
+ data_err = data_err.drop(columns=["backbone"]).rename(columns={metric: backbone, "dataset": "backbone"})
147
+ data_err = data_err.set_index(['backbone']).T.reset_index()
148
+ data_err = data_err.rename(columns={"index": "backbone"})
149
+ data_err = data_err.loc[:, ["backbone"] + included_datsets]
150
+ raw_per_dataset_final_err = data_err.copy() if len(raw_per_dataset_final_err.index)==0 else pd.concat([raw_per_dataset_final_err, data_err], ignore_index=True)
151
+
152
+ raw_per_dataset_final = raw_per_dataset_final.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
153
+ raw_per_dataset_final_err = raw_per_dataset_final_err.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
154
+ raw_per_dataset_final = raw_per_dataset_final.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
155
+ raw_per_dataset_final_err = raw_per_dataset_final_err.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
156
+
157
+ #normalize results
158
+ normalizer = compute_tools.load_normalizer(benchmark_name=benchmark_name)
159
+ new_metric = normalizer.normalize_data_frame(df=submission_results, metric=metric)
160
+
161
+ #get normalized values per dataset
162
+ series = submission_results.groupby(dataset_group_keys)[new_metric].apply(compute_tools.iqm)
163
+ normalized_per_dataset = series.to_frame().reset_index()
164
+ normalized_per_dataset = normalized_per_dataset.drop(columns=["partition name"], errors='ignore')
165
+ included_datsets = [d for d in DATASETS if d in set(normalized_per_dataset["dataset"])]
166
+ normalized_per_dataset_final = pd.DataFrame(columns=["backbone"] + included_datsets)
167
+
168
+ #get normalized errors per dataset
169
+ series = submission_results.groupby(dataset_group_keys)[new_metric].apply(compute_tools.trimmed_sem)
170
+ normalized_per_dataset_err = series.to_frame().reset_index()
171
+ normalized_per_dataset_err = normalized_per_dataset_err.drop(columns=["partition name"], errors='ignore')
172
+ normalized_per_dataset_final_err = pd.DataFrame(columns=["backbone"] + included_datsets)
173
+
174
+ #rearrange
175
+ for backbone in submission_backbones:
176
+ #get values
177
+ data = normalized_per_dataset.loc[normalized_per_dataset["backbone"] == backbone]
178
+ data = data.drop(columns=["backbone"]).rename(columns={new_metric: backbone, "dataset": "backbone"})
179
+ data = data.set_index(['backbone']).T.reset_index()
180
+ data = data.rename(columns={"index": "backbone"})
181
+ try:
182
+ data = data.loc[:, ["backbone"] + included_datsets]
183
+ except KeyError as e:
184
+ print(f'{backbone} {e=}')
185
+ continue
186
+ normalized_per_dataset_final = data.copy() if len(normalized_per_dataset_final.index)==0 else pd.concat([normalized_per_dataset_final, data], ignore_index=True)
187
+
188
+ #get errors
189
+ data_err = normalized_per_dataset_err.loc[normalized_per_dataset["backbone"] == backbone]
190
+ data_err = data_err.drop(columns=["backbone"]).rename(columns={new_metric: backbone, "dataset": "backbone"})
191
+ data_err = data_err.set_index(['backbone']).T.reset_index()
192
+ data_err = data_err.rename(columns={"index": "backbone"})
193
+ data_err = data_err.loc[:, ["backbone"] + included_datsets]
194
+ normalized_per_dataset_final_err = data_err.copy() if len(normalized_per_dataset_final_err.index)==0 else pd.concat([normalized_per_dataset_final_err, data_err], ignore_index=True)
195
+
196
+ normalized_per_dataset_final = normalized_per_dataset_final.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
197
+ normalized_per_dataset_final_err = normalized_per_dataset_final_err.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
198
+ normalized_per_dataset_final =normalized_per_dataset_final.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
199
+ normalized_per_dataset_final_err =normalized_per_dataset_final_err.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
200
+
201
+ #get normalized values by dimension
202
+ normalized_overall = pd.DataFrame(columns=["backbone"])
203
+ normalized_overall_std_err = pd.DataFrame(columns=["backbone"])
204
+ submission_dimensions = []
205
+ for dimension in DIMENSIONS:
206
+ dimension_data = submission_results.loc[submission_results["dataset"].isin(DIMENSIONS[dimension])].copy()
207
+ dimension_datasets = sorted(set(dimension_data["dataset"]))
208
+ dimension_backbones = sorted(set(dimension_data["backbone"]))
209
+ exclude_backbone = []
210
+ for backbone in dimension_backbones:
211
+ backbone_datasets = dimension_data.loc[dimension_data["backbone"] == backbone]["dataset"].tolist()
212
+ if set(backbone_datasets) != set(dimension_datasets):
213
+ #if backbone is missing datasets, drop from table
214
+ exclude_backbone.append(backbone)
215
+
216
+ dimension_datasets = [True if d in dimension_datasets else False for d in DIMENSIONS[dimension]]
217
+ # dimension_data = dimension_data[~dimension_data["backbone"].isin(exclude_backbone)]
218
+ if all(dimension_datasets):
219
+ submission_dimensions.append(dimension)
220
+
221
+ #get values
222
+ normalized_iqms_dimension = compute_tools.bootstrap_iqm_aggregate(dimension_data, metric= new_metric)
223
+ series = normalized_iqms_dimension.groupby(overall_group_keys)[new_metric].apply(np.mean)
224
+ normalized_iqms_dimension = series.to_frame().reset_index()
225
+ normalized_iqms_dimension = normalized_iqms_dimension.rename(columns={new_metric: dimension})
226
+ normalized_iqms_dimension.loc[normalized_iqms_dimension["backbone"].isin(exclude_backbone), dimension, ] = np.nan
227
+
228
+
229
+ #get errors
230
+ normalized_dimension_std_err = compute_tools.bootstrap_iqm_aggregate(dimension_data, metric=new_metric)
231
+ series = normalized_dimension_std_err.groupby(["backbone"])[new_metric].apply(sem)
232
+ # series = submission_results.loc[submission_results["dataset"].isin(DIMENSIONS[dimension])].copy()
233
+ # series = series[~series["dataset"].isin(exclude_backbone)]
234
+ # series = series.groupby(overall_group_keys)[new_metric].apply(sem)
235
+ normalized_dimension_std_err = series.to_frame().reset_index()
236
+ normalized_dimension_std_err = normalized_dimension_std_err.drop(columns=["partition name"], errors='ignore')
237
+ normalized_dimension_std_err = normalized_dimension_std_err.rename(columns={new_metric: dimension})
238
+ normalized_dimension_std_err.loc[normalized_dimension_std_err["backbone"].isin(exclude_backbone), dimension] = np.nan
239
+ # series = dimension_data.groupby(overall_group_keys)[new_metric].apply(sem)
240
+ # normalized_dimension_std_err = series.to_frame().reset_index()
241
+ # normalized_dimension_std_err = normalized_dimension_std_err.rename(columns={new_metric: dimension})
242
+ else:
243
+ normalized_iqms_dimension = pd.DataFrame({
244
+ "backbone": submission_backbones,
245
+ dimension: [np.nan] * len(submission_backbones),
246
+ })
247
+ normalized_dimension_std_err = pd.DataFrame({
248
+ "backbone": submission_backbones,
249
+ dimension: [np.nan] * len(submission_backbones),
250
+ })
251
+
252
+ normalized_iqms_dimension.sort_values(by=['backbone'], inplace=True)
253
+ normalized_dimension_std_err.sort_values(by=['backbone'], inplace=True)
254
+ normalized_overall = normalized_iqms_dimension.copy() if len(normalized_overall.index)==0 else normalized_overall.merge(normalized_iqms_dimension, how="left", on="backbone")
255
+ normalized_overall_std_err = normalized_dimension_std_err.copy() if len(normalized_overall_std_err.index)==0 else normalized_overall_std_err.merge(normalized_dimension_std_err, how="left", on="backbone")
256
+
257
+ output[submission]["raw_per_dataset"] = raw_per_dataset_final
258
+ output[submission]["normalized_per_dataset"] = normalized_per_dataset_final
259
+ output[submission]["normalized_overall"] = normalized_overall
260
+ output[submission]["raw_per_dataset_err"] = raw_per_dataset_final_err
261
+ output[submission]["normalized_per_dataset_err"] = normalized_per_dataset_final_err
262
+ output[submission]["normalized_overall_err"] = normalized_overall_std_err
263
+ output[submission]["submission_dimensions"] = submission_dimensions
264
+ return output
265
+
266
+
267
+
268
+ def format_values(x):
269
+ x = x*100
270
+ x = round(x,1)
271
+ return x
272
+
273
+
274
+ def format_errors(x):
275
+ x = x*100
276
+ x = round(x,1)
277
+ return x
278
+
279
+
280
+ def get_config_setting_string(row) -> str:
281
+ config_settings = f"""
282
+ Early Stop Patience: {row.early_stop_patience} /
283
+ Decoder: {row.decoder} /
284
+ # trials: {row.n_trials} /
285
+ Data : {row.data_percentages}% /
286
+ Batch Size Selection: {row.batch_size_selection}
287
+ """
288
+ config_settings = config_settings.replace("early_stopping_50", "50").replace("n_trials_16", "16").replace("data_100_perc", "100")
289
+ return config_settings
290
+
291
+
292
+ def get_overall_performance_table(all_submission_results: dict,
293
+ all_iqms: dict
294
+ ) -> Dict:
295
+ """
296
+ create tables for 'Aggregated Performance' page.
297
+
298
+ Args:
299
+ all_submission_results: dict containing all results
300
+ all_iqms: dict containing all computed results
301
+
302
+ """
303
+ output = {}
304
+ result_type = ["normalized"]
305
+ for value in result_type:
306
+ all_tables = []
307
+ all_tables_err = []
308
+ for submission in all_submission_results:
309
+ #get results
310
+ submission_data = all_iqms[submission][f"{value}_overall"].copy()
311
+ submission_data["Model"] = "-"
312
+ submission_data["# params"] = "-"
313
+ submission_data["submission"] = submission
314
+
315
+ submission_data_err = all_iqms[submission][f"{value}_overall_err"].copy()
316
+ submission_data_err["Config Settings"] = "-"
317
+ submission_data_err["Model"] = "-"
318
+ submission_data_err["# params"] = "-"
319
+ submission_data_err["submission"] = submission
320
+
321
+ #get parameters
322
+ parameters = all_submission_results[submission]["results"]
323
+ for backbone in all_submission_results[submission]["all_backbones"]:
324
+ submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
325
+ submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
326
+
327
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
328
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
329
+ all_tables.append(submission_data)
330
+ all_tables_err.append(submission_data_err)
331
+ print(f'\n\n\n {submission} {value} {submission_data[["Core", "Detection (Object/Instance)", "Model", "submission"]].head(50)=}')
332
+
333
+ all_tables = pd.concat(all_tables)
334
+ all_tables_err = pd.concat(all_tables_err)
335
+ all_tables.loc[:, COLUMN_ORDER[value]["overall_table"]] = all_tables[COLUMN_ORDER[value]["overall_table"]].round(DIGITS_FOR_VALUES).apply(lambda series: series.apply(format_values))
336
+ all_tables_err.loc[:, COLUMN_ORDER[value]["overall_table"]]= all_tables_err[COLUMN_ORDER[value]["overall_table"]].round(DIGITS_FOR_ERRORS).apply(lambda series: series.apply(format_errors))
337
+ all_tables = all_tables[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["overall_table"]]
338
+ all_tables_err = all_tables_err[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["overall_table"]]
339
+ for col in COLUMN_ORDER[value]["overall_table"]:
340
+ new_column = f"{col}"
341
+ all_tables = all_tables.rename(columns={col: new_column})
342
+ all_tables_err = all_tables_err.rename(columns={col: new_column})
343
+ output[value] = all_tables
344
+ output[f"{value}_err"] = all_tables_err
345
+ return output
346
+
347
+
348
+ def get_performance_by_dimension_table(all_submission_results: dict,
349
+ all_iqms: dict
350
+ ) -> Dict:
351
+ """
352
+ create tables for 'Capabilities' page.
353
+
354
+ Args:
355
+ all_submission_results: dict containing all results
356
+ all_iqms: dict containing all computed results
357
+
358
+ """
359
+ output = {}
360
+ result_type = ["normalized"]
361
+ for value in result_type:
362
+ all_tables = {}
363
+ all_tables_err = {}
364
+ for dimension in DIMENSIONS:
365
+ dimension_tables = []
366
+ dimension_tables_err = []
367
+ for submission in all_submission_results:
368
+ #get results
369
+ submission_data = all_iqms[submission][f"{value}_per_dataset"][DIMENSIONS[dimension]+["backbone"]].copy()
370
+ dimension_results = all_iqms[submission][f"{value}_overall"][[dimension]+["backbone"]].copy()
371
+ submission_data = submission_data.merge(dimension_results, how="left", on="backbone")
372
+ submission_data["Model"] = "-"
373
+ submission_data["# params"] = "-"
374
+ submission_data["submission"] = submission
375
+
376
+ submission_data_err = all_iqms[submission][f"{value}_per_dataset_err"][DIMENSIONS[dimension]+["backbone"]].copy()
377
+ dimension_results_err = all_iqms[submission][f"{value}_overall_err"][[dimension]+["backbone"]].copy()
378
+ submission_data_err = submission_data_err.merge(dimension_results_err, how="left", on="backbone")
379
+ submission_data_err["Model"] = "-"
380
+ submission_data_err["# params"] = "-"
381
+ submission_data_err["submission"] = submission
382
+
383
+ #get parameters
384
+ parameters = all_submission_results[submission]["results"]
385
+ for backbone in all_submission_results[submission]["all_backbones"]:
386
+ submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
387
+ submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
388
+
389
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
390
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
391
+ dimension_tables.append(submission_data)
392
+ dimension_tables_err.append(submission_data_err)
393
+ # print(f'\n\n\n {submission} {dimension} {submission_data[[dimension, "Model", "submission"]].head(50)=}')
394
+
395
+ dimension_tables = pd.concat(dimension_tables)
396
+ dimension_tables.loc[:, DIMENSIONS[dimension]] = dimension_tables[DIMENSIONS[dimension]].round(DIGITS_FOR_VALUES).apply(lambda series: series.apply(format_values))
397
+ dimension_tables.loc[:, dimension] = dimension_tables[dimension].round(DIGITS_FOR_VALUES).apply(format_values)
398
+ dimension_tables = dimension_tables[COLUMN_ORDER["all_tables"] + [dimension] + COLUMN_ORDER[value]["dimension_tables"] + DIMENSIONS[dimension]]
399
+ new_column = f"{dimension}"
400
+ dimension_tables = dimension_tables.rename(columns={dimension: new_column})
401
+ all_tables[dimension] = dimension_tables
402
+
403
+ dimension_tables_err = pd.concat(dimension_tables_err)
404
+ dimension_tables_err.loc[:, DIMENSIONS[dimension]] = dimension_tables_err[DIMENSIONS[dimension]].round(DIGITS_FOR_ERRORS).apply(lambda series: series.apply(format_errors))
405
+ dimension_tables_err.loc[:, dimension] = dimension_tables_err[dimension].round(DIGITS_FOR_ERRORS).apply(format_errors)
406
+ dimension_tables_err = dimension_tables_err[COLUMN_ORDER["all_tables"] + [dimension] + COLUMN_ORDER[value]["dimension_tables"] + DIMENSIONS[dimension]]
407
+ dimension_tables_err = dimension_tables_err.rename(columns={dimension: new_column})
408
+ all_tables_err[f"{dimension}_err"] = dimension_tables_err
409
+
410
+ output[value] = all_tables
411
+ output[f"{value}_err"] = all_tables_err
412
+ return output
413
+
414
+
415
+ def get_datasets_tables(all_submission_results: dict,
416
+ all_iqms: dict
417
+ ) -> Dict:
418
+ """
419
+ creates tables for dataset tab.
420
+
421
+ Args:
422
+ all_submission_results: dict containing all results
423
+ all_iqms: dict containing all computed results
424
+ """
425
+ output = {}
426
+ result_type = ["normalized","raw"]
427
+ for value in result_type:
428
+ all_tables = {}
429
+ all_tables_err = {}
430
+ for dataset in DATASETS:
431
+ dataset_tables = []
432
+ dataset_tables_err = []
433
+ for submission in all_submission_results:
434
+ #get results
435
+ submission_data = all_iqms[submission][f"{value}_per_dataset"][["backbone", dataset]].copy()
436
+ submission_data["Model"] = "-"
437
+ submission_data["# params"] = "-"
438
+ submission_data["submission"] = submission
439
+
440
+ submission_data_err = all_iqms[submission][f"{value}_per_dataset_err"][["backbone", dataset]].copy()
441
+ submission_data_err["Model"] = "-"
442
+ submission_data_err["# params"] = "-"
443
+ submission_data_err["submission"] = submission
444
+
445
+ #get parameters
446
+ parameters = all_submission_results[submission]["results"]
447
+ new_column = "IQM" if value == "normalized" else "Mean"
448
+
449
+ for backbone in all_submission_results[submission]["all_backbones"]:
450
+ submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
451
+ submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
452
+ submission_data = submission_data.rename(columns={dataset: new_column})
453
+
454
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
455
+ submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
456
+ submission_data_err = submission_data_err.rename(columns={dataset: new_column})
457
+ #TODO: add columns
458
+ dataset_tables.append(submission_data)
459
+ dataset_tables_err.append(submission_data_err)
460
+ column = "IQM" if value == "normalized" else "Mean"
461
+ dataset_tables = pd.concat(dataset_tables)
462
+ dataset_tables.loc[:, column] = dataset_tables[column].round(DIGITS_FOR_VALUES).apply(format_values)
463
+ all_tables[dataset] = dataset_tables[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["dataset_tables"]]
464
+
465
+ dataset_tables_err = pd.concat(dataset_tables_err)
466
+ dataset_tables_err.loc[:, column] = dataset_tables_err[column].round(DIGITS_FOR_ERRORS).apply(format_errors)
467
+ all_tables_err[dataset] = dataset_tables_err[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["dataset_tables"]]
468
+
469
+ output[value] = all_tables
470
+ output[f"{value}_err"] = all_tables_err
471
+ return output
472
+
473
+
474
+ def get_submission_tables(all_submission_results: dict):
475
+ output = {}
476
+ frozen_or_full_ft = ["frozen" ,"full_ft"]
477
+ config_info = []
478
+ for method in frozen_or_full_ft:
479
+ for sub in all_submission_results[method]:
480
+ config = all_submission_results[method][sub]["config_info"]
481
+ config = config.to_frame().T
482
+ config["submission"] = sub
483
+ config["backbone method"] = method
484
+ config_info.append(config)
485
+ output = pd.concat(config_info)
486
+ output = output[COLUMN_ORDER["submission_info"]]
487
+ return output
488
+
489
+
490
+
491
+
492
+ if __name__ == "__main__":
493
+ #load results
494
+ all_submission_results, all_model_names, all_submissions = load_results(folder=RESULTS_DIR)
495
+
496
+ #COMBINED NORM
497
+ norm_base_results= []
498
+ for method in NORM_BASE_SUBMISSION:
499
+ for sub in NORM_BASE_SUBMISSION[method]:
500
+ norm_base_results.append(all_submission_results[method][sub]["results"].copy())
501
+ norm_base_results = pd.concat(norm_base_results)
502
+ benchmark_name = "leaderboard_combined"
503
+ compute_tools.make_normalizer(norm_base_results.reset_index(),
504
+ metrics=("test metric",),
505
+ benchmark_name=benchmark_name)
506
+
507
+ overall_performance_tables = {}
508
+ performance_by_dimension_tables = {}
509
+ datasets_tables = {}
510
+ for method in ["full_ft","frozen"]:
511
+ method_iqms = compute_all_iqms(
512
+ all_submission_results = all_submission_results[method],
513
+ benchmark_name = benchmark_name,
514
+ )
515
+
516
+ #create tables to be rendered
517
+ overall_performance_tables[method] = get_overall_performance_table(all_submission_results=all_submission_results[method],
518
+ all_iqms=method_iqms)
519
+ performance_by_dimension_tables[method] = get_performance_by_dimension_table(all_submission_results=all_submission_results[method],
520
+ all_iqms=method_iqms)
521
+ datasets_tables[method] = get_datasets_tables(all_submission_results=all_submission_results[method],
522
+ all_iqms=method_iqms)
523
+
524
+ submission_info_table = get_submission_tables(all_submission_results=all_submission_results)
525
+
526
+ compiled_results = {
527
+ "overall_performance_tables": overall_performance_tables,
528
+ "performance_by_dimension_tables": performance_by_dimension_tables,
529
+ "datasets_tables": datasets_tables,
530
+ "submission_info_table": submission_info_table
531
+ }
532
+
533
+ with open(f'{RESULTS_DIR}/compiled.pkl', 'wb') as handle:
534
+ pickle.dump(compiled_results, handle, protocol=pickle.HIGHEST_PROTOCOL)
utils/compute_tools.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright contributors to the geobench project
2
+ # modified from geobench (https://github.com/ServiceNow/geo-bench/blob/main/geobench/plot_tools.py)
3
+
4
+ import os
5
+ import numpy as np
6
+ import pandas as pd
7
+ from pathlib import Path
8
+ from utils.constants import NORMALIZER_DIR
9
+ import json
10
+ from scipy.stats import trim_mean, sem
11
+ from scipy.stats.mstats import trim
12
+
13
+ np.random.seed(100)
14
+
15
+ def biqm(scores):
16
+ """Return a bootstram sample of iqm."""
17
+ b_scores = np.random.choice(scores, size=len(scores), replace=True)
18
+ return trim_mean(b_scores, proportiontocut=0.25, axis=None)
19
+
20
+
21
+ def trimmed_sem(scores):
22
+ """Interquantile mean."""
23
+ scores = trim(scores, limits=(0.25,0.25), relative=True)
24
+ scores = scores.data[np.where(~scores.mask)]
25
+ return sem(scores)
26
+
27
+
28
+ def iqm(scores):
29
+ """Interquantile mean."""
30
+ return trim_mean(scores, proportiontocut=0.25, axis=None)
31
+
32
+
33
+ def bootstrap_iqm(
34
+ df, group_keys=("model", "dataset"), metric="test_metric", repeat=100
35
+ ):
36
+ """Boostram of seeds for all model and all datasets to comput iqm score distribution."""
37
+ df_list = []
38
+ for i in range(repeat):
39
+ series = df.groupby(list(group_keys))[metric].apply(biqm)
40
+ df_list.append(series.to_frame().reset_index())
41
+
42
+ return pd.concat(df_list)
43
+
44
+
45
+ def bootstrap_iqm_aggregate(df, metric="test_metric", repeat=100):
46
+ """Stratified bootstrap (by dataset) of all seeds to compute iqm score distribution for each backbone."""
47
+ group = df.groupby(["backbone", "dataset"])
48
+
49
+ df_list = []
50
+ for i in range(repeat):
51
+ new_df = group.sample(frac=1, replace=True, random_state=100+i)
52
+ series = new_df.groupby(["backbone"])[metric].apply(iqm)
53
+ df_list.append(series.to_frame().reset_index())
54
+
55
+ new_df = pd.concat(df_list)
56
+ new_df.loc[:, "dataset"] = "aggregated"
57
+ return new_df
58
+
59
+
60
+ def bootstrap_mean_aggregate(df, metric="test_metric", repeat=100):
61
+ """Stratified bootstrap (by dataset) of all seeds to compute mean score distribution for each backbone."""
62
+ group = df.groupby(["backbone", "dataset"])
63
+
64
+ df_list = []
65
+ for i in range(repeat):
66
+ new_df = group.sample(frac=1, replace=True, random_state=100+i)
67
+ series = new_df.groupby(["backbone"])[metric].apply(np.mean)
68
+ df_list.append(series.to_frame().reset_index())
69
+
70
+ new_df = pd.concat(df_list)
71
+ new_df.loc[:, "dataset"] = "aggregated"
72
+ return new_df
73
+
74
+
75
+
76
+ def average_seeds(df, group_keys=("model", "dataset"), metric="test metric"):
77
+ """Average seeds for all model and all datasets."""
78
+ df_avg = df.groupby(list(group_keys))[metric].mean()
79
+ df_avg = df_avg.unstack(level="dataset")
80
+
81
+ df_avg = df_avg.round(3)
82
+ return df_avg
83
+
84
+
85
+ def extract_1x_data(df_all):
86
+ """Extract only resutls trained on 100% of the data"""
87
+ return df_all[
88
+ (df_all["partition name"] == "1.00x train") | (df_all["partition name"] == "default")
89
+ ].copy()
90
+
91
+
92
+ class Normalizer:
93
+ """Class used to normalize results beween min and max for each dataset."""
94
+
95
+ def __init__(self, range_dict):
96
+ """Initialize a new instance of Normalizer class."""
97
+ self.range_dict = range_dict
98
+
99
+ def __call__(self, ds_name, values, scale_only=False):
100
+ """Call the Normalizer class."""
101
+ mn, mx = self.range_dict[ds_name]
102
+ range = mx - mn
103
+ if scale_only:
104
+ return values / range
105
+ else:
106
+ return (values - mn) / range
107
+
108
+ def from_row(self, row, scale_only=False):
109
+ """Normalize from row."""
110
+ return [self(ds_name, val, scale_only=scale_only) for ds_name, val in row.items()]
111
+
112
+ def normalize_data_frame(self, df, metric):
113
+ """Normalize the entire dataframe."""
114
+ new_metric = f"normalized {metric}"
115
+ df[new_metric] = df.apply(lambda row: self.__call__(row["dataset"], row[metric]), axis=1)
116
+ return new_metric
117
+
118
+ def save(self, benchmark_name):
119
+ """Save normalizer to json file."""
120
+
121
+ if not os.path.exists(f"{NORMALIZER_DIR}/{benchmark_name}/"):
122
+ print("making directory")
123
+ os.makedirs(f"{NORMALIZER_DIR}/{benchmark_name}/")
124
+ with open(f"{NORMALIZER_DIR}/{benchmark_name}/normalizer.json", "w") as f:
125
+ json.dump(self.range_dict, f, indent=2)
126
+
127
+
128
+ def load_normalizer(benchmark_name):
129
+ """Load normalizer from json file."""
130
+ with open(f"{NORMALIZER_DIR}/{benchmark_name}/normalizer.json", "r") as f:
131
+ range_dict = json.load(f)
132
+ return Normalizer(range_dict)
133
+
134
+
135
+ def make_normalizer(data_frame, metrics=("test metric",), benchmark_name="leaderboard_combined"):
136
+ """Extract min and max from data_frame to build Normalizer object for all datasets."""
137
+ datasets = data_frame["dataset"].unique()
138
+ range_dict = {}
139
+
140
+ for dataset in datasets:
141
+ sub_df = data_frame[data_frame["dataset"] == dataset]
142
+ data = []
143
+ for metric in metrics:
144
+ data.append(sub_df[metric].to_numpy())
145
+ range_dict[dataset] = (np.min(data), np.max(data))
146
+
147
+ normalizer = Normalizer(range_dict)
148
+
149
+ if benchmark_name:
150
+ normalizer.save(benchmark_name)
151
+
152
+ return normalizer
153
+
154
+
utils/constants.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ NORM_BASE_SUBMISSION = {
4
+ "full_ft": ["114be1f0-5a41-43a5-b4e6-7fb683bc01ec", "2ce4a907-7ae3-45d3-a07a-558f8d0d758b"],# "b5e5e59d-044b-4848-8323-aceb8c535ed9"],
5
+ # "frozen": ["80100fc6-dc1a-4514-b946-341157eaf816"],
6
+ }
7
+ DIGITS_FOR_VALUES = 3
8
+ DIGITS_FOR_ERRORS = 6
9
+ REQUIRED_SEEDS = 5
10
+
11
+
12
+ DIMENSIONS = {
13
+ "Multi-Spectral-Dependent": ["benv2", "biomassters", "pastis", "so2sat", "cloudsen12", "spacenet2", "burn_scars", "fotw",],#
14
+ "Multi-Temporal": ['kuro_siwo','pastis', 'biomassters', 'dynamic_earthnet', ],
15
+ "Pixel-wise": ['kuro_siwo', 'pastis', 'burn_scars', 'spacenet2', 'cloudsen12', 'caffe', 'flair2','dynamic_earthnet','biomassters', "spacenet7", "fotw",],
16
+ "Classification": ['so2sat', 'forestnet', 'benv2', 'treesatai'],
17
+ "Detection (Object/Instance)": ["substation", "everwatch", "nzcattle", "pastis_r",],
18
+ "Under 10m Resolution": ["spacenet2","treesatai", "flair2",'dynamic_earthnet', "spacenet7"],
19
+ "10m and Above Resolution": ["biomassters", "so2sat", "kuro_siwo", "cloudsen12", "pastis", "benv2", "forestnet", "burn_scars", "caffe", "fotw",],#
20
+ "RGB/NIR": ["flair2", "treesatai", 'dynamic_earthnet', "spacenet7", "fotw",], #
21
+ "Core": ['kuro_siwo', 'pastis', 'burn_scars', 'cloudsen12', 'flair2', "spacenet7", 'benv2', 'treesatai', 'biomassters', "fotw","substation", "everwatch", ],
22
+ }
23
+
24
+
25
+ DIMENSION_INFO = {
26
+ "Multi-Spectral-Dependent": "datasets that have a statistically significant increase in perfromance when mutlispectral bands are used",
27
+ "Multi-Temporal": "datasets with more than 1 timestamps used as an input",
28
+ "Pixel-wise": "datasets for pixel-wise segmentation and regression",
29
+ "Classification": "single-label and multi-label classification datasets",
30
+ "Detection (Object/Instance)":"datasets for instance segmentation and object detection",
31
+ "Under 10m Resolution": "datasets with resolution <= 1 metre",
32
+ "10m and Above Resolution": "datasets with 10 metres =< resolution <= 30 metres",
33
+ "RGB/NIR": "datasets using Red, Green, Blue, and NIR bands",
34
+ "Core": "subset with datasets from each dimension",
35
+ }
36
+
37
+
38
+ DATASETS = [
39
+ 'biomassters', 'so2sat', 'forestnet', 'benv2', 'treesatai',
40
+ 'kuro_siwo', 'dynamic_earthnet', 'pastis', 'burn_scars', 'spacenet2',
41
+ 'cloudsen12', 'fotw', 'caffe', 'flair2', "spacenet7",
42
+ "substation", "everwatch", "nzcattle", "pastis_r",
43
+ ]
44
+
45
+
46
+
47
+ DATASET_INFO = {
48
+ "Dataset": [item.replace("_", " ").title() for item in DATASETS],
49
+ "Description": [
50
+ "regression dataset for Above Ground Biomass (AGB) prediction", #biomassters
51
+ "multi-class classifictaion dataset for Global Local Climate Zones", #so2sat
52
+ "multi-class classifictaion dataset for deforestation drivers", #forestnet
53
+ "multi-label classifictaion dataset for land cover",#benv2
54
+ "multi-label classifictaion dataset for tree species",#treesatai
55
+ "SAR semantic segmentation dataset for rapid flood mapping",#kuro_siwo_mean
56
+ "semantic segmentation dataset for land use/land cover",#dynamic_earthnet
57
+ "semantic segmentation dataset for agricultural parcels",#pastis
58
+ "semantic segmentation dataset for burn scars",#burn_scars
59
+ "semantic segmentation dataset for building detection",#spacenet2
60
+ "semantic segmentation dataset for cloud and cloud shadow detection",#cloudsen12
61
+ "semantic/instance segmentation dataset for agricultural fields ",#fotw
62
+ "semantic/instance segmentation dataset for glacier calving front extraction",#caffe
63
+ "semantic segmentation dataset for land use/land cover",#flair2
64
+ "semantic segmentation dataset for building detection",#spacenet7
65
+ "instance segmentation dataset for substations",#substation
66
+ "object detection dataset for bird species",#everwatch
67
+ "object detection dataset for cattle",#nzcattle
68
+ "instance segmentation dataset for crop type mapping",#pastis_r
69
+ ],
70
+ "Dimensions": [", ".join([dim for dim, data_list in DIMENSIONS.items() if dataset in data_list]) for dataset in DATASETS]
71
+ }
72
+
73
+
74
+ COLUMN_ORDER = {
75
+ "raw": {
76
+ "dataset_tables": ['Mean'],
77
+ "dimension_tables": []
78
+ },
79
+ "normalized": {
80
+ "overall_table": [
81
+ "Core", "Multi-Spectral-Dependent", "Multi-Temporal", "Pixel-wise", "Classification", "Detection (Object/Instance)",
82
+ "Under 10m Resolution", "10m and Above Resolution",
83
+ "RGB/NIR",
84
+ ],
85
+ "dataset_tables": ['IQM'] ,
86
+ "dimension_tables": []
87
+
88
+ },
89
+ "all_tables": ['Model', '# params', 'submission'],
90
+ "submission_info": ["submission", "backbone method", "decoder", "n_trials", "early_stop_patience", "data_percentages", "batch_size_selection" ],
91
+ }
92
+
93
+ root = Path(__file__).parent.resolve()
94
+ root = "/".join(str(root).split("/")[:-1])
95
+ RESULTS_DIR = f"{root}/results"
96
+ MODEL_INFO_FILE = f"{root}/utils/model_info.json"
97
+ NORMALIZER_DIR = f"{root}/utils/normalizer"
98
+
99
+
100
+ #for validation of new submissions
101
+ NEW_SUBMISSION_FOLDER = f"{root}/new_submission"
102
+ CSV_FILE = "results_and_parameters.csv"
103
+ JSON_FILE = "additional_info.json"
104
+ NEW_SUBMISSION_COLUMN_INFO = {
105
+ "string_cols": ['dataset', 'Metric', 'experiment_name', 'partition name', 'backbone', 'decoder','batch_size_selection', 'frozen_or_full_ft'],
106
+ "integer_cols": ['early_stop_patience', 'n_trials', 'Seed', 'data_percentages', 'batch_size'],
107
+ "float_cols": ['weight_decay', 'lr', 'test metric', ]
108
+ }
109
+ NEW_SUBMISSION_COLUMN_NAMES = []
110
+ for key, value in NEW_SUBMISSION_COLUMN_INFO.items():
111
+ NEW_SUBMISSION_COLUMN_NAMES.extend(value)
112
+
113
+
114
+ JSON_FORMAT = {
115
+ "Paper Link": "N/A",
116
+ "Code Repository Link ": "N/A",
117
+ "License": "N/A",
118
+ "Number of HPO trials": "16",
119
+ "Additional information about submission": "N/A",
120
+ "Comments on new models in submission": "N/A",
121
+ "New model info":
122
+ [
123
+ {
124
+ "model_display_name": "TBD",
125
+ "model_size": "TBD",
126
+ "unique_backbone_key": "TBD"
127
+ }
128
+ ]
129
+ }
utils/input_validation.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import json
3
+ import os
4
+ import numpy as np
5
+ import uuid
6
+ from utils.constants import (NEW_SUBMISSION_FOLDER, CSV_FILE, JSON_FILE, DIMENSIONS,
7
+ NEW_SUBMISSION_COLUMN_INFO, NEW_SUBMISSION_COLUMN_NAMES,
8
+ JSON_FORMAT, MODEL_INFO_FILE, RESULTS_DIR, REQUIRED_SEEDS)
9
+
10
+
11
+ def check_correct_file_type(folder_contents) -> bool:
12
+ """
13
+ checks that folder has 2 items: a csv file and a json file
14
+ """
15
+ contains_correct_files = (len(folder_contents) == 2) and (CSV_FILE in folder_contents) and (JSON_FILE in folder_contents)
16
+ if not contains_correct_files:
17
+ print("\nInput Validation Error: Please check that the {NEW_SUBMISSION_FOLDER} contains the files: \
18
+ {CSV_FILE} and {JSON_FILE}")
19
+ return False
20
+ return True
21
+
22
+
23
+ def check_csv_columns_datatypes() -> bool:
24
+ """
25
+ checks that csv file has only required columns and columns have correct data types
26
+ """
27
+ #check for correct columns
28
+ csv_data = pd.read_csv(f"{NEW_SUBMISSION_FOLDER}/{CSV_FILE}")
29
+ submitted_csv_column_names = set(csv_data.columns)
30
+ expected_column_names = set(NEW_SUBMISSION_COLUMN_NAMES)
31
+ for item in expected_column_names:
32
+ if item not in submitted_csv_column_names:
33
+ print(f"The following column is missing: {item}")
34
+ correct_columns = expected_column_names.issubset(submitted_csv_column_names)
35
+ if not correct_columns:
36
+ print(f"\nInput Validation Error: Please ensure that the csv file contains the following columns: {NEW_SUBMISSION_COLUMN_NAMES}")
37
+
38
+ #check for correct dtype
39
+ correct_dtypes = []
40
+ for col in NEW_SUBMISSION_COLUMN_INFO["string_cols"]:
41
+ if col in csv_data.columns:
42
+ print(f"{col} is string/object:{pd.api.types.is_object_dtype(csv_data[col])}")
43
+ correct_dtypes.append(pd.api.types.is_object_dtype(csv_data[col]))
44
+ for col in NEW_SUBMISSION_COLUMN_INFO["integer_cols"]:
45
+ if col in csv_data.columns:
46
+ print(f"{col} is numeric: {pd.api.types.is_numeric_dtype(csv_data[col])}")
47
+ correct_dtypes.append(pd.api.types.is_numeric_dtype(csv_data[col]))
48
+ for col in NEW_SUBMISSION_COLUMN_INFO["float_cols"]:
49
+ if col in csv_data.columns:
50
+ print(f"{col} is numeric: {pd.api.types.is_numeric_dtype(csv_data[col])}")
51
+ correct_dtypes.append(pd.api.types.is_numeric_dtype(csv_data[col]))
52
+ correct_dtypes = all(correct_dtypes)
53
+ if not correct_dtypes:
54
+ print(f"\nInput Validation Error: Please ensure that the csv columns have the correct datatypes as follows: \n\
55
+ string/object type columns: {NEW_SUBMISSION_COLUMN_INFO['string_cols']} \n\
56
+ numeric/integer type columns: {NEW_SUBMISSION_COLUMN_INFO['integer_cols']}\
57
+ {NEW_SUBMISSION_COLUMN_INFO['float_cols']}")
58
+ return correct_columns, correct_dtypes
59
+
60
+
61
+ def check_correct_entries_per_dataset(required_seeds: int = REQUIRED_SEEDS) -> bool:
62
+ """
63
+ checks for correct number of runs per backbone/dataset combination
64
+ checks for required number of unique seeds
65
+ """
66
+ csv_data = pd.read_csv(f"{NEW_SUBMISSION_FOLDER}/{CSV_FILE}")
67
+ count_values = csv_data.groupby(["backbone", "dataset"]).count()
68
+ count_values = list(set(count_values["test metric"].tolist()))
69
+ correct_num_values = (len(count_values) == 1) and (count_values[0] == required_seeds)
70
+ if not correct_num_values:
71
+ print(f"\nInput Validation Error: Please ensure that each backbone/dataset combination has {required_seeds} entries")
72
+
73
+ count_seeds = csv_data.groupby(["backbone", "dataset"]).nunique()
74
+ count_seeds = list(set(count_seeds["Seed"].tolist()))
75
+ correct_num_seeds = (len(count_seeds) == 1) and (count_seeds[0] == required_seeds)
76
+ if not correct_num_seeds:
77
+ print(f"\nInput Validation Warning: Please ensure that each backbone/dataset combination has {required_seeds} unique seeds")
78
+ return correct_num_values, correct_num_seeds
79
+
80
+
81
+ def check_json_keys() -> bool:
82
+ """
83
+ checks json file has required keys and subkeys,
84
+ check json file values have correct data type
85
+ """
86
+ with open(f"{NEW_SUBMISSION_FOLDER}/{JSON_FILE}") as f:
87
+ json_submission_data = json.load(f)
88
+ #TBD: check json file nested values have correct data type
89
+ all_required_keys = []
90
+ for key, value in JSON_FORMAT.items():
91
+ if (key in json_submission_data) and (type(value) == type(json_submission_data[key])):
92
+ all_required_keys.append(True)
93
+ else:
94
+ all_required_keys.append(False)
95
+ all_required_keys = all(all_required_keys)
96
+ if not all_required_keys:
97
+ print(f"\nInput Validation Error: Please ensure that json file has the correct keys and datatypes")
98
+
99
+ return all_required_keys
100
+
101
+
102
+ def check_has_atleast_one_dimension() -> bool:
103
+ """
104
+ check that submission contains datasets required for at least one submission
105
+ """
106
+ csv_data = pd.read_csv(f"{NEW_SUBMISSION_FOLDER}/{CSV_FILE}")
107
+ submitted_csv_datasets = set(csv_data["dataset"].tolist())
108
+ contains_atleast_one_dimension = []
109
+ for dimension, datasets in DIMENSIONS.items():
110
+ datasets = set(datasets)
111
+ contains_atleast_one_dimension.append(datasets.issubset(submitted_csv_datasets))
112
+ contains_atleast_one_dimension = any(contains_atleast_one_dimension)
113
+ if not contains_atleast_one_dimension:
114
+ print("\nInput Validation Error: Please check that the submission contains all datasets for one or more dimensions")
115
+ print(f'currently submitted datasets are: {submitted_csv_datasets}')
116
+ return contains_atleast_one_dimension
117
+
118
+
119
+ def check_has_frozen_or_full_ft() -> bool:
120
+ """
121
+ check that submission has correct values in frozen_or_full_ft column
122
+ """
123
+ csv_data = pd.read_csv(f"{NEW_SUBMISSION_FOLDER}/{CSV_FILE}")
124
+ frozen_or_full_ft = set(csv_data["frozen_or_full_ft"].tolist())
125
+ correct_values = True
126
+ for item in frozen_or_full_ft:
127
+ if not ((item == "frozen") or (item == "full_ft")):
128
+ correct_values = False
129
+ if not correct_values:
130
+ print("\nInput Validation Error: Please check that the frozen_or_full_ft column contains only 'frozen' or 'full_ft'")
131
+ print(f'currently submitted values are: {frozen_or_full_ft}')
132
+ return correct_values
133
+
134
+ def update_new_backbones_and_models():
135
+ """
136
+ checks if backbone exists in model_info.json (used to display results)
137
+ if not, information on the new model is added to the json file
138
+ """
139
+ with open(f"{NEW_SUBMISSION_FOLDER}/{JSON_FILE}") as f:
140
+ json_submission_data = json.load(f)
141
+
142
+ #read model info
143
+ with open(MODEL_INFO_FILE) as f:
144
+ existing_model_info = json.load(f)
145
+ for item in json_submission_data["New model info"]:
146
+ submitted_backbone = item["unique_backbone_key"]
147
+ if submitted_backbone not in existing_model_info["BACKBONE_NAMES"]:
148
+ existing_model_info["BACKBONE_NAMES"][submitted_backbone] = item["model_display_name"]
149
+ existing_model_info["MODEL_SIZE"][submitted_backbone] = item["model_size"]
150
+
151
+ #save new information
152
+ with open(MODEL_INFO_FILE, 'w') as fp:
153
+ json.dump(existing_model_info, fp)
154
+
155
+
156
+ def validate_new_submission() -> bool:
157
+ """
158
+
159
+ """
160
+ #get folder contents
161
+ if not os.path.exists(NEW_SUBMISSION_FOLDER): return
162
+ folder_contents = os.listdir(NEW_SUBMISSION_FOLDER)
163
+ items_to_ignore = ['.DS_Store']
164
+ for item in items_to_ignore:
165
+ if item in folder_contents: folder_contents.remove(item)
166
+ if len(folder_contents) == 0:
167
+ print("no new submissions")
168
+ return
169
+
170
+ #check all conditions
171
+ correct_file_type = check_correct_file_type(folder_contents)
172
+ correct_columns, correct_dtypes = check_csv_columns_datatypes()
173
+ correct_num_values, correct_num_seeds = check_correct_entries_per_dataset()
174
+ correct_json_keys = check_json_keys()
175
+ contains_atleast_one_dimension = check_has_atleast_one_dimension()
176
+ correct_frozen_or_full_ft = check_has_frozen_or_full_ft()
177
+ all_checks_passed = all([correct_file_type, correct_columns, correct_dtypes,
178
+ correct_json_keys, correct_num_values, #correct_num_seeds,
179
+ contains_atleast_one_dimension, correct_frozen_or_full_ft])
180
+
181
+ if all_checks_passed:
182
+ submission_id = uuid.uuid4()
183
+ os.makedirs(f"{RESULTS_DIR}/{submission_id}")
184
+
185
+ #copy only required keys in json file to new submission folder
186
+ with open(f"{NEW_SUBMISSION_FOLDER}/{JSON_FILE}") as f:
187
+ json_submission_data = json.load(f)
188
+ new_dict = {}
189
+ for key, value in JSON_FORMAT.items():
190
+ if value == "TBD": continue
191
+ new_dict[key] = json_submission_data[key]
192
+ with open(f"{RESULTS_DIR}/{submission_id}/{JSON_FILE}", 'w') as fp:
193
+ json.dump(new_dict, fp)
194
+
195
+ #copy only required columns in csv file to new submission folder
196
+ csv_data = pd.read_csv(f"{NEW_SUBMISSION_FOLDER}/{CSV_FILE}")
197
+ csv_data = csv_data[NEW_SUBMISSION_COLUMN_NAMES]
198
+ csv_data.to_csv(f"{RESULTS_DIR}/{submission_id}/{CSV_FILE}", index=False)
199
+
200
+ #add any new model info to model_info.json
201
+ update_new_backbones_and_models()
202
+
203
+ #reset NEW_SUBMISSION_FOLDER
204
+ os.system(f"rm -r {NEW_SUBMISSION_FOLDER}/")
205
+ os.makedirs(NEW_SUBMISSION_FOLDER)
206
+ return
207
+ else:
208
+ print("\nThe new sumbission has not been formatted correctly. Please fix the errors above")
209
+ raise ValueError
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+ if __name__ == "__main__":
218
+ validate_new_submission()
utils/model_info.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"BACKBONE_NAMES": {
2
+ "vit_large_patch16": "ScaleMAE-ViT 300M",
3
+ "resnet101": "Resnet101",
4
+ "prithvi_vit_100": "Prithvi-EO-V1-100",
5
+ "prithvi_eo_v2_100": "Prithvi-EO-V2-100",
6
+ "resnet50": "Resnet50-ImageNet",
7
+ "dofa_base_patch16_224": "DOFA-ViT-B",
8
+ "dofa_large_patch16_224": "DOFA-ViT 300M",
9
+ "clay_v1_base": "Clay-V1 ViT-B",
10
+ "prithvi_eo_v2_300": "Prithvi-EO-V2 300M",
11
+ "prithvi_eo_v2_300_tl": "Prithvi-EO-V2 300M TL",
12
+ "prithvi_eo_v2_600": "Prithvi-EO-V2 600M",
13
+ "prithvi_eo_v2_600_tl": "Prithvi-EO-V2 600M TL",
14
+ "satlas_swin_b_sentinel2_si_ms": "Satlas-Swin 100M",
15
+ "ssl4eos12_resnet50_sentinel2_all_dino": "Resnet50-DINO",
16
+ "ssl4eos12_resnet50_sentinel2_all_moco": "Resnet50-MOCO",
17
+ "ssl4eos12_resnet50_sentinel2_all_decur": "Resnet50-DeCUR",
18
+ "satlas_resnet50_sentinel2_si_ms_satlas": "Satlas-Resnet50",
19
+ "terramind_v1_base": "TerraMind-V1-Base",
20
+ "terramind_v1_large": "TerraMind-V1-Large",
21
+ "convnext_xlarge_fb_in22k": "ConvNext-XLarge-ImageNet",
22
+ "convnext_large_fb_in22k": "ConvNext-Large-ImageNet",
23
+ "dinov3_vitl16": "DinoV3-ViT-L-SAT",
24
+ "dinov3_convnext_large": "DinoV3-ConvNext-Large-WEB",
25
+ "satlas_swin_b_naip_si_rgb": "Satlas-SwinB-Naip",
26
+ "TBD": "TBD", "": ""},
27
+ "MODEL_SIZE": {
28
+ "vit_large_patch16": "300M",
29
+ "resnet101": "42M",
30
+ "prithvi_vit_100": "100M",
31
+ "prithvi_eo_v2_100": "100M",
32
+ "resnet50": "25M",
33
+ "dofa_base_patch16_224": "100M",
34
+ "dofa_large_patch16_224": "300M",
35
+ "clay_v1_base": "100M",
36
+ "prithvi_eo_v2_300": "300M",
37
+ "prithvi_eo_v2_300_tl": "300M",
38
+ "prithvi_eo_v2_600": "600M",
39
+ "prithvi_eo_v2_600_tl": "600M",
40
+ "satlas_swin_b_sentinel2_si_ms": "100M",
41
+ "ssl4eos12_resnet50_sentinel2_all_dino": "25M",
42
+ "ssl4eos12_resnet50_sentinel2_all_moco": "25M",
43
+ "ssl4eos12_resnet50_sentinel2_all_decur": "25M",
44
+ "satlas_resnet50_sentinel2_si_ms_satlas": "25M",
45
+ "terramind_v1_base": "100M",
46
+ "terramind_v1_large": "300M",
47
+ "convnext_xlarge_fb_in22k": "390M",
48
+ "convnext_large_fb_in22k": "230M",
49
+ "satlas_swin_b_naip_si_rgb": "100M",
50
+ "dinov3_vitl16": "300M",
51
+ "dinov3_convnext_large": "230M",
52
+ "TBD": "TBD", "": ""}}
utils/normalizer/.DS_Store ADDED
Binary file (6.15 kB). View file
 
utils/normalizer/leaderboard_combined/normalizer.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "treesatai": [
3
+ 0.5388144254684448,
4
+ 0.6719674468040466
5
+ ],
6
+ "cloudsen12": [
7
+ 0.5892206430435181,
8
+ 0.7069313526153564
9
+ ],
10
+ "dynamic_earthnet": [
11
+ 0.1660756915807724,
12
+ 0.3561779260635376
13
+ ],
14
+ "forestnet": [
15
+ 0.4642497599124908,
16
+ 0.6082578301429749
17
+ ],
18
+ "spacenet2": [
19
+ 0.8431392908096313,
20
+ 0.8844738006591797
21
+ ],
22
+ "fotw": [
23
+ 0.5552823543548584,
24
+ 0.6179081797599792
25
+ ],
26
+ "caffe": [
27
+ 0.5596897006034851,
28
+ 0.7002602815628052
29
+ ],
30
+ "burn_scars": [
31
+ 0.6498024463653564,
32
+ 0.9017086625099182
33
+ ],
34
+ "pastis": [
35
+ 0.2038679122924804,
36
+ 0.43324875831604
37
+ ],
38
+ "benv2": [
39
+ 0.7138733267784119,
40
+ 0.7664718627929688
41
+ ],
42
+ "kuro_siwo": [
43
+ 0.3207171559333801,
44
+ 0.7027350068092346
45
+ ],
46
+ "spacenet7": [
47
+ 0.3912872672080993,
48
+ 0.6402554512023926
49
+ ],
50
+ "flair2": [
51
+ 0.4062314331531524,
52
+ 0.5503402948379517
53
+ ],
54
+ "biomassters": [
55
+ 0.9482341889789176,
56
+ 0.9600944613389646
57
+ ],
58
+ "so2sat": [
59
+ 0.5111562013626099,
60
+ 0.6541582345962524
61
+ ],
62
+ "everwatch": [
63
+ 0.2177008986473083,
64
+ 0.3155497610569
65
+ ],
66
+ "nzcattle": [
67
+ 0.2819505035877228,
68
+ 0.401744931936264
69
+ ],
70
+ "pastis_r": [
71
+ 0.084835797548294,
72
+ 0.1661437004804611
73
+ ],
74
+ "substation": [
75
+ 0.1244395673274993,
76
+ 0.2031933367252349
77
+ ]
78
+ }