Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,007 Bytes
3e1a79e 4b82591 3e1a79e 4b82591 3e1a79e 7b03dbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
import os
# Model configuration
MODEL_PATH = "ibm-granite/granite-4.0-h-1b"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Global variables to store model and tokenizer
tokenizer = None
model = None
def load_model():
"""Load the model and tokenizer"""
global tokenizer, model
if tokenizer is None or model is None:
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map=DEVICE)
model.eval()
print("Model loaded successfully!")
@spaces.GPU # Use GPU for inference
def chat_with_model(message, history):
"""
Chat function that processes user input and generates responses
Args:
message (str): Current user message
history (list): Previous conversation history
Returns:
str: Model response
"""
try:
# Load model if not already loaded
load_model()
# Prepare chat format
messages = []
# Add system message for better performance
messages.append({
"role": "system",
"content": "You are a helpful AI assistant. Provide clear, accurate, and helpful responses."
})
# Add conversation history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
chat = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
input_tokens = tokenizer(chat, return_tensors="pt").to(DEVICE)
# Generate response
with torch.no_grad():
output = model.generate(
**input_tokens,
max_new_tokens=200,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode response
full_response = tokenizer.batch_decode(output)[0]
# Extract only the assistant's response
# Find the start of assistant role
assistant_start = full_response.find('<|start_of_role|>assistant<|end_of_role|>')
if assistant_start != -1:
assistant_start += len('<|start_of_role|>assistant<|end_of_role|>')
assistant_response = full_response[assistant_start:].strip()
else:
# Fallback to original method if pattern not found
response_start = full_response.find('<|assistant|>')
if response_start != -1:
response_start += len('<|assistant|>')
assistant_response = full_response[response_start:].strip()
else:
assistant_response = full_response.strip()
# Clean up the response - remove end markers
assistant_response = assistant_response.replace('<|endoftext|>', '').replace('<|end_of_text|>', '').strip()
return assistant_response
except Exception as e:
print(f"Error generating response: {e}")
return f"I apologize, but I encountered an error: {str(e)}. Please try again."
def clear_chat():
"""Clear the chat history"""
return []
# Create the Gradio chat interface
def create_chat_app():
with gr.Blocks(title="IBM Granite Chat", css="""
.header {
text-align: center;
padding: 10px;
background: linear-gradient(90deg, #0066cc, #004499);
color: white;
margin-bottom: 20px;
border-radius: 10px;
}
.header a {
color: #ffffff;
text-decoration: none;
font-weight: bold;
}
.header a:hover {
text-decoration: underline;
}
""") as demo:
# Header with attribution
gr.HTML("""
<div class="header">
<h1>IBM Granite 4.0 Chat</h1>
<p>Powered by <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></p>
</div>
""")
# Chat interface
chatbot = gr.ChatInterface(
fn=chat_with_model,
title="Chat with IBM Granite 4.0",
description="Chat with the IBM Granite 4.0 1B parameter language model. Ask questions, get help, or have a conversation!",
examples=[
"What is machine learning?",
"Explain quantum computing in simple terms",
"How can I improve my programming skills?",
"What are the latest developments in AI?",
"Tell me about IBM Research"
],
)
# Additional info
with gr.Accordion("Model Information", open=False):
gr.Markdown(f"""
## Model Details
- **Model**: {MODEL_PATH}
- **Parameters**: 1B
- **Device**: {DEVICE.upper()}
- **Max Tokens**: 200 per response
- **Temperature**: 0.7 (for balanced creativity and accuracy)
## Tips
- Ask specific questions for better results
- The model works best with clear, concise prompts
- Try asking follow-up questions to dive deeper into topics
- The model can help with programming, explanations, and general knowledge
""")
return demo
if __name__ == "__main__":
# Create and launch the app
app = create_chat_app()
# Launch configuration
app.launch() |