Spaces:
Runtime error
Runtime error
Change preprocessing function
Browse files- app.py +10 -5
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -3,15 +3,18 @@ import random
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
from torch import nn
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
|
| 9 |
|
| 10 |
MODEL_PATH="./best_model_test/"
|
| 11 |
|
| 12 |
device = torch.device("cpu")
|
| 13 |
|
| 14 |
-
preprocessor =
|
|
|
|
|
|
|
|
|
|
| 15 |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH)
|
| 16 |
model.eval()
|
| 17 |
|
|
@@ -43,8 +46,9 @@ def visualize_instance_seg_mask(mask):
|
|
| 43 |
def query_image(img):
|
| 44 |
"""Función para generar predicciones a la escala origina"""
|
| 45 |
inputs = preprocessor(images=img, return_tensors="pt")
|
|
|
|
| 46 |
with torch.no_grad():
|
| 47 |
-
preds = model(
|
| 48 |
preds_upscale = upscale_logits(preds, preds.shape[2])
|
| 49 |
predict_label = torch.argmax(preds_upscale, dim=1).to(device)
|
| 50 |
result = predict_label[0,:,:].detach().cpu().numpy()
|
|
@@ -55,7 +59,8 @@ demo = gr.Interface(
|
|
| 55 |
query_image,
|
| 56 |
inputs=[gr.Image(type="pil")],
|
| 57 |
outputs="image",
|
| 58 |
-
title="
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
demo.launch()
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
from torch import nn
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from transformers import SegformerForSemanticSegmentation)
|
| 8 |
|
| 9 |
|
| 10 |
MODEL_PATH="./best_model_test/"
|
| 11 |
|
| 12 |
device = torch.device("cpu")
|
| 13 |
|
| 14 |
+
preprocessor = transforms.Compose([
|
| 15 |
+
transforms.resize(128),
|
| 16 |
+
transforms.ToTensor()
|
| 17 |
+
])
|
| 18 |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH)
|
| 19 |
model.eval()
|
| 20 |
|
|
|
|
| 46 |
def query_image(img):
|
| 47 |
"""Función para generar predicciones a la escala origina"""
|
| 48 |
inputs = preprocessor(images=img, return_tensors="pt")
|
| 49 |
+
inputs = preprocessor(img).unsqueeze(0)
|
| 50 |
with torch.no_grad():
|
| 51 |
+
preds = model(inputs)["logits"]
|
| 52 |
preds_upscale = upscale_logits(preds, preds.shape[2])
|
| 53 |
predict_label = torch.argmax(preds_upscale, dim=1).to(device)
|
| 54 |
result = predict_label[0,:,:].detach().cpu().numpy()
|
|
|
|
| 59 |
query_image,
|
| 60 |
inputs=[gr.Image(type="pil")],
|
| 61 |
outputs="image",
|
| 62 |
+
title="Skyguard: segmentador de glaciares de roca 🛰️ +️ 🛡️ ️",
|
| 63 |
+
description="Modelo de segmentación de imágenes para detectar glaciares de roca.<br> Se entrenó un modelo [nvidia/SegFormer](https://huggingface.co/nvidia/mit-b0) con _fine-tuning_ en el [rock-glacier-dataset](https://huggingface.co/datasets/alkzar90/rock-glacier-dataset)"
|
| 64 |
)
|
| 65 |
|
| 66 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
torch
|
|
|
|
| 2 |
transformers
|
| 3 |
numpy
|
|
|
|
| 1 |
torch
|
| 2 |
+
torchvision
|
| 3 |
transformers
|
| 4 |
numpy
|