Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,25 +12,17 @@ install("torch")
|
|
| 12 |
install("pandas")
|
| 13 |
install("scikit-learn")
|
| 14 |
install("gradio")
|
| 15 |
-
|
| 16 |
import os
|
| 17 |
import pandas as pd
|
| 18 |
import gradio as gr
|
| 19 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Load
|
| 22 |
-
def load_model_and_tokenizer():
|
| 23 |
-
try:
|
| 24 |
-
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 25 |
-
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 26 |
-
return model, tokenizer
|
| 27 |
-
except Exception as e:
|
| 28 |
-
print(f"Error loading model or tokenizer: {e}")
|
| 29 |
-
return None, None
|
| 30 |
-
|
| 31 |
-
# Function to load the dataset
|
| 32 |
def load_dataset():
|
| 33 |
file_path = "Valid-part-2.xlsx"
|
|
|
|
| 34 |
if not os.path.exists(file_path):
|
| 35 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
| 36 |
|
|
@@ -42,44 +34,60 @@ def load_dataset():
|
|
| 42 |
print(f"Error loading dataset: {e}")
|
| 43 |
return None
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
# Gradio interface
|
| 60 |
def build_interface():
|
| 61 |
df = load_dataset() # Load your dataset
|
| 62 |
if df is None:
|
| 63 |
return None
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
iface = gr.Interface(
|
| 66 |
-
fn=
|
| 67 |
-
inputs=gr.Textbox(
|
| 68 |
-
outputs=
|
| 69 |
-
title="PEC Number Lookup",
|
| 70 |
-
description="Enter your name to find your PEC number."
|
| 71 |
)
|
| 72 |
return iface
|
| 73 |
|
| 74 |
-
#
|
| 75 |
if __name__ == "__main__":
|
| 76 |
-
|
| 77 |
-
if
|
| 78 |
-
|
| 79 |
else:
|
| 80 |
-
|
| 81 |
-
if iface is not None:
|
| 82 |
-
iface.launch()
|
| 83 |
-
else:
|
| 84 |
-
print("Failed to build interface due to dataset issues.")
|
| 85 |
|
|
|
|
| 12 |
install("pandas")
|
| 13 |
install("scikit-learn")
|
| 14 |
install("gradio")
|
|
|
|
| 15 |
import os
|
| 16 |
import pandas as pd
|
| 17 |
import gradio as gr
|
| 18 |
from transformers import AutoModel, AutoTokenizer
|
| 19 |
+
import torch
|
| 20 |
+
from sklearn.model_selection import train_test_split
|
| 21 |
|
| 22 |
+
# Load your dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def load_dataset():
|
| 24 |
file_path = "Valid-part-2.xlsx"
|
| 25 |
+
print(f"Current working directory: {os.getcwd()}")
|
| 26 |
if not os.path.exists(file_path):
|
| 27 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
| 28 |
|
|
|
|
| 34 |
print(f"Error loading dataset: {e}")
|
| 35 |
return None
|
| 36 |
|
| 37 |
+
# Preprocess the data
|
| 38 |
+
def preprocess_data(df):
|
| 39 |
+
# Add your preprocessing steps here
|
| 40 |
+
# For example: cleaning, tokenization, etc.
|
| 41 |
+
return df
|
| 42 |
+
|
| 43 |
+
# Train your model
|
| 44 |
+
def train_model(df):
|
| 45 |
+
# Split the dataset into training and testing sets
|
| 46 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
| 47 |
|
| 48 |
+
# Load your pre-trained model and tokenizer from Hugging Face
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 50 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 51 |
+
|
| 52 |
+
# Add your training code here
|
| 53 |
+
# This may involve tokenizing the data and feeding it into the model
|
| 54 |
+
return model
|
| 55 |
+
|
| 56 |
+
# Define the Gradio interface function
|
| 57 |
+
def predict(input_text):
|
| 58 |
+
# Load the model and tokenizer
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 60 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 61 |
+
|
| 62 |
+
# Tokenize input and make predictions
|
| 63 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = model(**inputs)
|
| 66 |
+
|
| 67 |
+
# Process the outputs as needed (e.g., extracting relevant information)
|
| 68 |
+
return outputs.last_hidden_state
|
| 69 |
|
| 70 |
+
# Build the Gradio interface
|
| 71 |
def build_interface():
|
| 72 |
df = load_dataset() # Load your dataset
|
| 73 |
if df is None:
|
| 74 |
return None
|
| 75 |
+
|
| 76 |
+
df = preprocess_data(df) # Preprocess the dataset
|
| 77 |
+
model = train_model(df) # Train your model
|
| 78 |
|
| 79 |
iface = gr.Interface(
|
| 80 |
+
fn=predict,
|
| 81 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
|
| 82 |
+
outputs="text"
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
return iface
|
| 85 |
|
| 86 |
+
# Run the Gradio interface
|
| 87 |
if __name__ == "__main__":
|
| 88 |
+
iface = build_interface()
|
| 89 |
+
if iface:
|
| 90 |
+
iface.launch()
|
| 91 |
else:
|
| 92 |
+
print("Failed to build the Gradio interface. Please check the dataset and model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|