Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,26 +2,37 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
|
| 5 |
-
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
|
|
|
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
-
torch_dtype = torch.
|
| 14 |
else:
|
| 15 |
torch_dtype = torch.float32
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
|
| 23 |
|
| 24 |
-
|
| 25 |
def infer(
|
| 26 |
prompt,
|
| 27 |
negative_prompt,
|
|
@@ -38,6 +49,7 @@ def infer(
|
|
| 38 |
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
| 40 |
|
|
|
|
| 41 |
image = pipe(
|
| 42 |
prompt=prompt,
|
| 43 |
negative_prompt=negative_prompt,
|
|
@@ -151,4 +163,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
|
| 5 |
+
import spaces #[uncomment to use ZeroGPU]
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
from safetensors.torch import load_file
|
| 11 |
+
|
| 12 |
+
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 13 |
+
repo_name = "tianweiy/DMD2"
|
| 14 |
+
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
if torch.cuda.is_available():
|
| 19 |
+
torch_dtype = torch.bfloat16
|
| 20 |
else:
|
| 21 |
torch_dtype = torch.float32
|
| 22 |
|
| 23 |
+
# Load model.
|
| 24 |
+
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
|
| 25 |
+
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
|
| 26 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
|
| 27 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
|
| 31 |
MAX_SEED = np.iinfo(np.int32).max
|
| 32 |
MAX_IMAGE_SIZE = 1024
|
| 33 |
|
| 34 |
|
| 35 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
| 36 |
def infer(
|
| 37 |
prompt,
|
| 38 |
negative_prompt,
|
|
|
|
| 49 |
|
| 50 |
generator = torch.Generator().manual_seed(seed)
|
| 51 |
|
| 52 |
+
# with network:
|
| 53 |
image = pipe(
|
| 54 |
prompt=prompt,
|
| 55 |
negative_prompt=negative_prompt,
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
demo.launch()
|