Spaces:
Runtime error
Runtime error
Update dataset_toolkits/encode_latent.py
Browse files- dataset_toolkits/encode_latent.py +127 -127
dataset_toolkits/encode_latent.py
CHANGED
|
@@ -1,127 +1,127 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import sys
|
| 3 |
-
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
| 4 |
-
import copy
|
| 5 |
-
import json
|
| 6 |
-
import argparse
|
| 7 |
-
import torch
|
| 8 |
-
import numpy as np
|
| 9 |
-
import pandas as pd
|
| 10 |
-
from tqdm import tqdm
|
| 11 |
-
from easydict import EasyDict as edict
|
| 12 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
-
from queue import Queue
|
| 14 |
-
|
| 15 |
-
import trellis.models as models
|
| 16 |
-
import trellis.modules.sparse as sp
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
torch.set_grad_enabled(False)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
if __name__ == '__main__':
|
| 23 |
-
parser = argparse.ArgumentParser()
|
| 24 |
-
parser.add_argument('--output_dir', type=str, required=True,
|
| 25 |
-
help='Directory to save the metadata')
|
| 26 |
-
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
| 27 |
-
help='Filter objects with aesthetic score lower than this value')
|
| 28 |
-
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg',
|
| 29 |
-
help='Feature model')
|
| 30 |
-
parser.add_argument('--enc_pretrained', type=str, default='
|
| 31 |
-
help='Pretrained encoder model')
|
| 32 |
-
parser.add_argument('--model_root', type=str, default='results',
|
| 33 |
-
help='Root directory of models')
|
| 34 |
-
parser.add_argument('--enc_model', type=str, default=None,
|
| 35 |
-
help='Encoder model. if specified, use this model instead of pretrained model')
|
| 36 |
-
parser.add_argument('--ckpt', type=str, default=None,
|
| 37 |
-
help='Checkpoint to load')
|
| 38 |
-
parser.add_argument('--instances', type=str, default=None,
|
| 39 |
-
help='Instances to process')
|
| 40 |
-
parser.add_argument('--rank', type=int, default=0)
|
| 41 |
-
parser.add_argument('--world_size', type=int, default=1)
|
| 42 |
-
opt = parser.parse_args()
|
| 43 |
-
opt = edict(vars(opt))
|
| 44 |
-
|
| 45 |
-
if opt.enc_model is None:
|
| 46 |
-
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}'
|
| 47 |
-
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda()
|
| 48 |
-
else:
|
| 49 |
-
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}'
|
| 50 |
-
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r')))
|
| 51 |
-
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda()
|
| 52 |
-
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt')
|
| 53 |
-
encoder.load_state_dict(torch.load(ckpt_path), strict=False)
|
| 54 |
-
encoder.eval()
|
| 55 |
-
print(f'Loaded model from {ckpt_path}')
|
| 56 |
-
|
| 57 |
-
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True)
|
| 58 |
-
|
| 59 |
-
# get file list
|
| 60 |
-
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
| 61 |
-
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
| 62 |
-
else:
|
| 63 |
-
raise ValueError('metadata.csv not found')
|
| 64 |
-
if opt.instances is not None:
|
| 65 |
-
with open(opt.instances, 'r') as f:
|
| 66 |
-
sha256s = [line.strip() for line in f]
|
| 67 |
-
metadata = metadata[metadata['sha256'].isin(sha256s)]
|
| 68 |
-
else:
|
| 69 |
-
if opt.filter_low_aesthetic_score is not None:
|
| 70 |
-
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
| 71 |
-
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True]
|
| 72 |
-
if f'latent_{latent_name}' in metadata.columns:
|
| 73 |
-
metadata = metadata[metadata[f'latent_{latent_name}'] == False]
|
| 74 |
-
|
| 75 |
-
start = len(metadata) * opt.rank // opt.world_size
|
| 76 |
-
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
| 77 |
-
metadata = metadata[start:end]
|
| 78 |
-
records = []
|
| 79 |
-
|
| 80 |
-
# filter out objects that are already processed
|
| 81 |
-
sha256s = list(metadata['sha256'].values)
|
| 82 |
-
for sha256 in copy.copy(sha256s):
|
| 83 |
-
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')):
|
| 84 |
-
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
| 85 |
-
sha256s.remove(sha256)
|
| 86 |
-
|
| 87 |
-
# encode latents
|
| 88 |
-
load_queue = Queue(maxsize=4)
|
| 89 |
-
try:
|
| 90 |
-
with ThreadPoolExecutor(max_workers=32) as loader_executor, \
|
| 91 |
-
ThreadPoolExecutor(max_workers=32) as saver_executor:
|
| 92 |
-
def loader(sha256):
|
| 93 |
-
try:
|
| 94 |
-
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz'))
|
| 95 |
-
load_queue.put((sha256, feats))
|
| 96 |
-
except Exception as e:
|
| 97 |
-
print(f"Error loading features for {sha256}: {e}")
|
| 98 |
-
loader_executor.map(loader, sha256s)
|
| 99 |
-
|
| 100 |
-
def saver(sha256, pack):
|
| 101 |
-
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')
|
| 102 |
-
np.savez_compressed(save_path, **pack)
|
| 103 |
-
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
| 104 |
-
|
| 105 |
-
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"):
|
| 106 |
-
sha256, feats = load_queue.get()
|
| 107 |
-
feats = sp.SparseTensor(
|
| 108 |
-
feats = torch.from_numpy(feats['patchtokens']).float(),
|
| 109 |
-
coords = torch.cat([
|
| 110 |
-
torch.zeros(feats['patchtokens'].shape[0], 1).int(),
|
| 111 |
-
torch.from_numpy(feats['indices']).int(),
|
| 112 |
-
], dim=1),
|
| 113 |
-
).cuda()
|
| 114 |
-
latent = encoder(feats, sample_posterior=False)
|
| 115 |
-
assert torch.isfinite(latent.feats).all(), "Non-finite latent"
|
| 116 |
-
pack = {
|
| 117 |
-
'feats': latent.feats.cpu().numpy().astype(np.float32),
|
| 118 |
-
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8),
|
| 119 |
-
}
|
| 120 |
-
saver_executor.submit(saver, sha256, pack)
|
| 121 |
-
|
| 122 |
-
saver_executor.shutdown(wait=True)
|
| 123 |
-
except:
|
| 124 |
-
print("Error happened during processing.")
|
| 125 |
-
|
| 126 |
-
records = pd.DataFrame.from_records(records)
|
| 127 |
-
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
| 4 |
+
import copy
|
| 5 |
+
import json
|
| 6 |
+
import argparse
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from easydict import EasyDict as edict
|
| 12 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
+
from queue import Queue
|
| 14 |
+
|
| 15 |
+
import trellis.models as models
|
| 16 |
+
import trellis.modules.sparse as sp
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
torch.set_grad_enabled(False)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
if __name__ == '__main__':
|
| 23 |
+
parser = argparse.ArgumentParser()
|
| 24 |
+
parser.add_argument('--output_dir', type=str, required=True,
|
| 25 |
+
help='Directory to save the metadata')
|
| 26 |
+
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
| 27 |
+
help='Filter objects with aesthetic score lower than this value')
|
| 28 |
+
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg',
|
| 29 |
+
help='Feature model')
|
| 30 |
+
parser.add_argument('--enc_pretrained', type=str, default='cavargas10/TRELLIS/ckpts/slat_enc_swin8_B_64l8_fp16',
|
| 31 |
+
help='Pretrained encoder model')
|
| 32 |
+
parser.add_argument('--model_root', type=str, default='results',
|
| 33 |
+
help='Root directory of models')
|
| 34 |
+
parser.add_argument('--enc_model', type=str, default=None,
|
| 35 |
+
help='Encoder model. if specified, use this model instead of pretrained model')
|
| 36 |
+
parser.add_argument('--ckpt', type=str, default=None,
|
| 37 |
+
help='Checkpoint to load')
|
| 38 |
+
parser.add_argument('--instances', type=str, default=None,
|
| 39 |
+
help='Instances to process')
|
| 40 |
+
parser.add_argument('--rank', type=int, default=0)
|
| 41 |
+
parser.add_argument('--world_size', type=int, default=1)
|
| 42 |
+
opt = parser.parse_args()
|
| 43 |
+
opt = edict(vars(opt))
|
| 44 |
+
|
| 45 |
+
if opt.enc_model is None:
|
| 46 |
+
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}'
|
| 47 |
+
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda()
|
| 48 |
+
else:
|
| 49 |
+
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}'
|
| 50 |
+
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r')))
|
| 51 |
+
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda()
|
| 52 |
+
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt')
|
| 53 |
+
encoder.load_state_dict(torch.load(ckpt_path), strict=False)
|
| 54 |
+
encoder.eval()
|
| 55 |
+
print(f'Loaded model from {ckpt_path}')
|
| 56 |
+
|
| 57 |
+
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True)
|
| 58 |
+
|
| 59 |
+
# get file list
|
| 60 |
+
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
| 61 |
+
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError('metadata.csv not found')
|
| 64 |
+
if opt.instances is not None:
|
| 65 |
+
with open(opt.instances, 'r') as f:
|
| 66 |
+
sha256s = [line.strip() for line in f]
|
| 67 |
+
metadata = metadata[metadata['sha256'].isin(sha256s)]
|
| 68 |
+
else:
|
| 69 |
+
if opt.filter_low_aesthetic_score is not None:
|
| 70 |
+
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
| 71 |
+
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True]
|
| 72 |
+
if f'latent_{latent_name}' in metadata.columns:
|
| 73 |
+
metadata = metadata[metadata[f'latent_{latent_name}'] == False]
|
| 74 |
+
|
| 75 |
+
start = len(metadata) * opt.rank // opt.world_size
|
| 76 |
+
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
| 77 |
+
metadata = metadata[start:end]
|
| 78 |
+
records = []
|
| 79 |
+
|
| 80 |
+
# filter out objects that are already processed
|
| 81 |
+
sha256s = list(metadata['sha256'].values)
|
| 82 |
+
for sha256 in copy.copy(sha256s):
|
| 83 |
+
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')):
|
| 84 |
+
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
| 85 |
+
sha256s.remove(sha256)
|
| 86 |
+
|
| 87 |
+
# encode latents
|
| 88 |
+
load_queue = Queue(maxsize=4)
|
| 89 |
+
try:
|
| 90 |
+
with ThreadPoolExecutor(max_workers=32) as loader_executor, \
|
| 91 |
+
ThreadPoolExecutor(max_workers=32) as saver_executor:
|
| 92 |
+
def loader(sha256):
|
| 93 |
+
try:
|
| 94 |
+
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz'))
|
| 95 |
+
load_queue.put((sha256, feats))
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error loading features for {sha256}: {e}")
|
| 98 |
+
loader_executor.map(loader, sha256s)
|
| 99 |
+
|
| 100 |
+
def saver(sha256, pack):
|
| 101 |
+
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')
|
| 102 |
+
np.savez_compressed(save_path, **pack)
|
| 103 |
+
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
| 104 |
+
|
| 105 |
+
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"):
|
| 106 |
+
sha256, feats = load_queue.get()
|
| 107 |
+
feats = sp.SparseTensor(
|
| 108 |
+
feats = torch.from_numpy(feats['patchtokens']).float(),
|
| 109 |
+
coords = torch.cat([
|
| 110 |
+
torch.zeros(feats['patchtokens'].shape[0], 1).int(),
|
| 111 |
+
torch.from_numpy(feats['indices']).int(),
|
| 112 |
+
], dim=1),
|
| 113 |
+
).cuda()
|
| 114 |
+
latent = encoder(feats, sample_posterior=False)
|
| 115 |
+
assert torch.isfinite(latent.feats).all(), "Non-finite latent"
|
| 116 |
+
pack = {
|
| 117 |
+
'feats': latent.feats.cpu().numpy().astype(np.float32),
|
| 118 |
+
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8),
|
| 119 |
+
}
|
| 120 |
+
saver_executor.submit(saver, sha256, pack)
|
| 121 |
+
|
| 122 |
+
saver_executor.shutdown(wait=True)
|
| 123 |
+
except:
|
| 124 |
+
print("Error happened during processing.")
|
| 125 |
+
|
| 126 |
+
records = pd.DataFrame.from_records(records)
|
| 127 |
+
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False)
|