File size: 8,191 Bytes
c569dd7
 
 
 
186b0eb
c569dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186b0eb
c569dd7
 
 
 
 
 
 
186b0eb
 
c569dd7
 
 
 
 
 
186b0eb
c569dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b5892
 
c569dd7
 
 
 
186b0eb
29b5892
 
 
 
 
 
 
 
 
 
 
186b0eb
29b5892
 
 
 
 
 
 
 
 
186b0eb
c569dd7
 
 
 
29b5892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186b0eb
29b5892
 
 
c569dd7
29b5892
 
 
 
47d59cb
 
186b0eb
47d59cb
 
 
 
186b0eb
0b6e435
 
 
 
 
 
 
 
47d59cb
 
29b5892
 
186b0eb
29b5892
 
 
c569dd7
 
 
 
 
0b6e435
 
29b5892
 
0b6e435
 
 
29b5892
c569dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186b0eb
c569dd7
 
 
 
 
0b6e435
c569dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b5892
c569dd7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import leafmap\n",
    "import solara\n",
    "import pystac_client\n",
    "import planetary_computer\n",
    "import odc.stac\n",
    "import geopandas as gpd\n",
    "import dask.distributed\n",
    "import matplotlib.pyplot as plt\n",
    "import rioxarray\n",
    "from osgeo import gdal\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Stashed public copies of NPS polygons and CalFire polygons\n",
    "\n",
    "\n",
    "zoom = solara.reactive(14)\n",
    "center = solara.reactive((34, -116))\n",
    "nps = gpd.read_file(\"/vsicurl/https://huggingface.co/datasets/cboettig/biodiversity/resolve/main/data/NPS.gdb\")\n",
    "calfire = gpd.read_file(\"/vsicurl/https://huggingface.co/datasets/cboettig/biodiversity/resolve/main/data/fire22_1.gdb\",  layer = \"firep22_1\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "\n",
    "# fire = gpd.read_file(\"/vsizip/vsicurl/https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/MTBS_Fire/data/composite_data/burned_area_extent_shapefile/mtbs_perimeter_data.zip\"\n",
    "\n",
    "# extract and reproject the Joshua Tree NP Polygon\n",
    "jtree = nps[nps.PARKNAME == \"Joshua Tree\"].to_crs(calfire.crs)\n",
    "# All Fires in the DB that intersect the Park\n",
    "jtree_fires = jtree.overlay(calfire, how=\"intersection\")\n",
    "\n",
    "# Extract a polygon if interest.   > 2015 for Sentinel, otherwise we can use LandSat\n",
    "recent = jtree_fires[jtree_fires.YEAR_ > \"2015\"]\n",
    "big = recent[recent.Shape_Area == recent.Shape_Area.max()].to_crs(\"EPSG:4326\")\n",
    "box = big.buffer(0.01).bounds.to_numpy()[0]  # Fire bbox + buffer\n",
    "#box = jtree.to_crs(\"EPSG:4326\").bounds.to_numpy()[0] # Park bbox\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datetime import datetime, timedelta\n",
    "alarm_date = datetime.strptime(big.ALARM_DATE.item(), \"%Y-%m-%dT%H:%M:%S+00:00\")  \n",
    "before_date = alarm_date - timedelta(days=14)\n",
    "after_date = alarm_date + timedelta(days=14)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "search_dates = big.ALARM_DATE.item() + \"/\" + big.CONT_DATE.item()\n",
    "search_dates = before_date.strftime(\"%Y-%m-%d\") + \"/\" + after_date.strftime(\"%Y-%m-%d\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def stac_search(box, datetime):    \n",
    "    # STAC Search for this imagery in space/time window\n",
    "    items = (\n",
    "        pystac_client.Client.\n",
    "        open(\"https://planetarycomputer.microsoft.com/api/stac/v1\",\n",
    "            modifier=planetary_computer.sign_inplace).\n",
    "        search(collections=[\"sentinel-2-l2a\"],\n",
    "                bbox=box,\n",
    "                datetime=datetime,\n",
    "                query={\"eo:cloud_cover\": {\"lt\": 10}}).\n",
    "        item_collection())\n",
    "    return items\n",
    "\n",
    "def compute_nbs(items, box):\n",
    "    # Time to compute:\n",
    "    client = dask.distributed.Client()\n",
    "    # landsat_bands = [\"nir08\",  \"swir16\"]\n",
    "    sentinel_bands = [\"B08\", \"B12\", \"SCL\"] # NIR, SWIR, and Cloud Mask\n",
    "\n",
    "    # The magic of gdalwarper. Can also resample, reproject, and aggregate on the fly\n",
    "    data = odc.stac.load(items,\n",
    "                        bands=sentinel_bands,\n",
    "                        bbox=box\n",
    "    )\n",
    "    # Compute the Normalized Burn Ratio, must be float\n",
    "    swir = data[\"B12\"].astype(\"float\")\n",
    "    nir = data[\"B08\"].astype(\"float\")\n",
    "    # can resample and aggregate in xarray. compute with dask\n",
    "    nbs = (((nir - swir) / (nir + swir)).\n",
    "        #  resample(time=\"MS\").\n",
    "        #  median(\"time\", keep_attrs=True).\n",
    "            compute()\n",
    "    )\n",
    "    return nbs\n",
    "\n",
    "items = stac_search(box, search_dates)\n",
    "nbs = compute_nbs(items, box)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "nbs.isel(time=0).rio.to_raster(raster_path=\"before.tif\", driver=\"COG\")\n",
    "nbs.isel(time=(nbs.time.size-1)).rio.to_raster(raster_path=\"after.tif\", driver=\"COG\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "before_url = \"https://huggingface.co/datasets/cboettig/solara-data/resolve/main/before.tif\"\n",
    "after_url = \"https://huggingface.co/datasets/cboettig/solara-data/resolve/main/after.tif\"\n",
    "\n",
    "style = {\n",
    "    \"stroke\": False,\n",
    "    \"fill\": True,\n",
    "    \"fillColor\": \"#ff6666\",\n",
    "    \"fillOpacity\": 0.5,\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Map(leafmap.Map):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(**kwargs)\n",
    "        # Add what you want below\n",
    "        # self.add_gdf(jtree, layer_name = \"Joshua Tree NP\")\n",
    "        self.add_gdf(jtree_fires, layer_name = \"All Fires\", style=style)\n",
    "        self.add_gdf(big, layer_name = big.FIRE_NAME.item())\n",
    "        #self.add_raster(\"before.tif\", layer_name = \"before\", colormap=\"viridis\")\n",
    "        #self.add_raster(\"after.tif\", layer_name = \"after\", colormap=\"viridis\")\n",
    "        self.split_map(before_url, after_url, \n",
    "                       left_label= \"before fire\", \n",
    "                       right_label = \"after fire\")\n",
    "        #self.add_stac_gui()\n",
    "\n",
    "\n",
    "@solara.component\n",
    "def Page():\n",
    "    with solara.Column(style={\"min-width\": \"500px\"}):\n",
    "        # solara components support reactive variables\n",
    "        # solara.SliderInt(label=\"Zoom level\", value=zoom, min=1, max=20)\n",
    "        # using 3rd party widget library require wiring up the events manually\n",
    "        # using zoom.value and zoom.set\n",
    "        Map.element(  # type: ignore\n",
    "            zoom=zoom.value,\n",
    "            on_zoom=zoom.set,\n",
    "            center=center.value,\n",
    "            on_center=center.set,\n",
    "            scroll_wheel_zoom=True,\n",
    "            toolbar_ctrl=False,\n",
    "            data_ctrl=False,\n",
    "            height=\"780px\",\n",
    "        )\n",
    "        solara.Text(f\"Zoom: {zoom.value}\")\n",
    "        solara.Text(f\"Center: {center.value}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "822080e3202b494888a05630fb5bf798",
       "version_major": 2,
       "version_minor": 0
      },
      "text/html": [
       "Cannot show widget. You probably want to rerun the code cell above (<i>Click in the code cell, and press Shift+Enter <kbd>⇧</kbd>+<kbd>↩</kbd></i>)."
      ],
      "text/plain": [
       "Cannot show ipywidgets in text"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "Page()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}