Christoph Holthaus
commited on
Commit
·
576474f
1
Parent(s):
def624a
dev
Browse files
app.py
CHANGED
|
@@ -1,20 +1,39 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
from llama_cpp import Llama
|
| 4 |
-
from time import time
|
| 5 |
import gradio as gr
|
| 6 |
import psutil
|
| 7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# load like this - use tne variable everywhere
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
# show warning, when empty and briefs description of how to set it
|
| 12 |
# also add link to "how to search" with link to bloke by default + example search link + example full value (mistral base?)
|
| 13 |
# info about ram requirements
|
| 14 |
|
| 15 |
# Initing things
|
| 16 |
-
print(f"debug: init model: {
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
print("! INITING DONE !")
|
| 19 |
|
| 20 |
# Preparing things to work
|
|
@@ -31,27 +50,18 @@ print(f"DEBUG: Memory free: {psutil.virtual_memory().free / (1024.0 ** 3)} GiB")
|
|
| 31 |
print(f"DEBUG: Memory available: {psutil.virtual_memory().available / (1024.0 ** 3)} GiB")
|
| 32 |
print(f"DEBUG: Memory: {psutil.virtual_memory().total / (1024.0 ** 3)} GiB")
|
| 33 |
|
| 34 |
-
|
| 35 |
-
from threading import Thread
|
| 36 |
-
from typing import Iterator
|
| 37 |
-
|
| 38 |
-
import spaces
|
| 39 |
-
import torch
|
| 40 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 41 |
-
|
| 42 |
-
DESCRIPTION = f"# Test model: {model_hf_path}"
|
| 43 |
|
| 44 |
if torch.cuda.is_available():
|
| 45 |
DESCRIPTION += "\n<p>This space is using CPU only. Use a different one if you want to go fast and use GPU. </p>"
|
| 46 |
|
|
|
|
| 47 |
MAX_MAX_NEW_TOKENS = 2048
|
| 48 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 49 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 50 |
|
| 51 |
|
| 52 |
-
|
| 53 |
-
# check localstorage, if no there, load, else use existing.
|
| 54 |
-
# check gradio - how does it dl? is there a function we can use?
|
| 55 |
|
| 56 |
if torch.cuda.is_available():
|
| 57 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
@@ -79,6 +89,7 @@ def generate(
|
|
| 79 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 80 |
input_ids = input_ids.to(model.device)
|
| 81 |
|
|
|
|
| 82 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 83 |
generate_kwargs = dict(
|
| 84 |
{"input_ids": input_ids},
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
from threading import Thread
|
| 6 |
+
from typing import Iterator
|
| 7 |
|
|
|
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
import psutil
|
| 10 |
+
import spaces
|
| 11 |
+
import torch
|
| 12 |
+
from time import time
|
| 13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 14 |
+
from llama_cpp import Llama
|
| 15 |
|
| 16 |
# load like this - use tne variable everywhere
|
| 17 |
+
model_uri_hf=os.getenv("MODEL_URI_HF")
|
| 18 |
+
# DEBUG!
|
| 19 |
+
model_uri_hf="https://huggingface.co/TheBloke/neural-chat-7B-v3-2-GGUF/blob/main/neural-chat-7b-v3-2.Q2_K.gguf"
|
| 20 |
# show warning, when empty and briefs description of how to set it
|
| 21 |
# also add link to "how to search" with link to bloke by default + example search link + example full value (mistral base?)
|
| 22 |
# info about ram requirements
|
| 23 |
|
| 24 |
# Initing things
|
| 25 |
+
print(f"debug: init model: {model_uri_hf}")
|
| 26 |
+
|
| 27 |
+
# Check if the model file already exists
|
| 28 |
+
if not os.path.isfile('model.bin'):
|
| 29 |
+
# Download the model
|
| 30 |
+
response = requests.get(model_uri_hf)
|
| 31 |
+
|
| 32 |
+
# Save the model to a local file
|
| 33 |
+
with open('model.bin', 'wb') as file:
|
| 34 |
+
file.write(response.content)
|
| 35 |
+
|
| 36 |
+
llm = Llama(model_path="./model.bin") # LLaMa model
|
| 37 |
print("! INITING DONE !")
|
| 38 |
|
| 39 |
# Preparing things to work
|
|
|
|
| 50 |
print(f"DEBUG: Memory available: {psutil.virtual_memory().available / (1024.0 ** 3)} GiB")
|
| 51 |
print(f"DEBUG: Memory: {psutil.virtual_memory().total / (1024.0 ** 3)} GiB")
|
| 52 |
|
| 53 |
+
DESCRIPTION = f"# Test model: {model_uri_hf}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
if torch.cuda.is_available():
|
| 56 |
DESCRIPTION += "\n<p>This space is using CPU only. Use a different one if you want to go fast and use GPU. </p>"
|
| 57 |
|
| 58 |
+
#todo - probably lower. like 200 in and maybe 500 out? Should be ok for quick test
|
| 59 |
MAX_MAX_NEW_TOKENS = 2048
|
| 60 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 61 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 62 |
|
| 63 |
|
| 64 |
+
|
|
|
|
|
|
|
| 65 |
|
| 66 |
if torch.cuda.is_available():
|
| 67 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
|
|
|
| 89 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 90 |
input_ids = input_ids.to(model.device)
|
| 91 |
|
| 92 |
+
streamer= Llama()
|
| 93 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 94 |
generate_kwargs = dict(
|
| 95 |
{"input_ids": input_ids},
|