Spaces:
Running
Running
File size: 2,625 Bytes
620876b d46499b 0907a69 620876b 9b0851e 5395b71 46bf00b 0c4536a 218d7fb 5395b71 c2da793 4ee699d 07c5183 d9f1d22 c2da793 0907a69 620876b 0907a69 620876b 9b0851e 5395b71 0c4536a 9b0851e 0c4536a 9b0851e 5395b71 963bc31 5395b71 963bc31 5395b71 40be1e4 5395b71 0c4536a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import chess
from datasets import load_dataset
import pickle
import time
from pyroaring import BitMap
def board_to_tokens(board):
return [(board.piece_at(sq).symbol(), chess.square_name(sq)) for sq in chess.SQUARES if board.piece_at(sq)]
def get_puzzle_positions(fen, moves_uci):
positions = []
board = chess.Board(fen)
board.push_uci(moves_uci.split()[0])
positions.append(board.copy())
for move_uci in moves_uci.split()[1:]:
board.push_uci(move_uci)
positions.append(board.copy())
return positions
def load_index(path='chess_index.pkl'):
with open(path, 'rb') as f: data = pickle.load(f)
return data['index'], data['metadata']
def query_positions(index, metadata, query_tokens):
result = index[query_tokens[0]].copy() if query_tokens[0] in index else BitMap()
for token in query_tokens[1:]:
if token in index: result &= index[token]
else: return BitMap()
return [(pos_id, metadata[pos_id]) for pos_id in result]
dset = load_dataset("Lichess/chess-puzzles", split="train")
index, metadata = load_index()
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
@app.get("/")
def read_root(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/search")
async def search(data: dict):
start = time.time()
board = chess.Board(data['fen'])
query_tokens = board_to_tokens(board)
matches = query_positions(index, metadata, query_tokens)
seen_puzzles = {}
for pos_id, (puzzle_row, move_idx) in matches:
if puzzle_row not in seen_puzzles:
seen_puzzles[puzzle_row] = (pos_id, move_idx)
results = []
for puzzle_row, (pos_id, move_idx) in seen_puzzles.items():
row = dset[puzzle_row]
positions = get_puzzle_positions(row['FEN'], row['Moves'])
matched_board = positions[move_idx]
results.append({
"PuzzleId": row['PuzzleId'],
"FEN": matched_board.fen(),
"Moves": row['Moves'],
"Rating": row['Rating'],
"Popularity": row['Popularity'],
"Themes": row['Themes'],
"MatchedMove": move_idx
})
elapsed_ms = (time.time() - start) * 1000
return {"count": len(results), "results": results, "time_ms": elapsed_ms} |