Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from gpt4all import GPT4All
|
| 3 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 4 |
|
| 5 |
title = "DiarizationLM GGUF inference on CPU"
|
| 6 |
|
| 7 |
description = """
|
| 8 |
-
DiarizationLM GGUF
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
|
| 11 |
model_path = "models"
|
| 12 |
model_name = "q4_k_m.gguf"
|
|
|
|
|
|
|
|
|
|
| 13 |
hf_hub_download(repo_id="google/DiarizationLM-13b-Fisher-v1", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
| 14 |
|
| 15 |
print("Start the model init process")
|
| 16 |
-
model = GPT4All(model_name=model_name,
|
|
|
|
|
|
|
|
|
|
| 17 |
print("Finish the model init process")
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
model._is_chat_session_activated = False
|
| 22 |
-
|
| 23 |
-
print("Finish the model config process")
|
| 24 |
-
|
| 25 |
-
def generater(message, history, temperature, top_p, top_k):
|
| 26 |
-
prompt = model.config["promptTemplate"].format(message)
|
| 27 |
max_new_tokens = round(len(prompt) / 3.0 * 1.2)
|
| 28 |
outputs = []
|
| 29 |
-
for token in model.generate(prompt=prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
outputs.append(token)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def vote(data: gr.LikeData):
|
| 35 |
if data.liked:
|
| 36 |
return
|
|
@@ -48,17 +61,14 @@ iface = gr.ChatInterface(
|
|
| 48 |
chatbot=chatbot,
|
| 49 |
additional_inputs=[],
|
| 50 |
examples=[
|
| 51 |
-
["<speaker:1> Hello, how are you doing <speaker:2> today? I am doing well."],
|
| 52 |
]
|
| 53 |
)
|
| 54 |
|
| 55 |
-
print("Added iface")
|
| 56 |
-
|
| 57 |
with gr.Blocks() as demo:
|
| 58 |
chatbot.like(vote, None, None)
|
| 59 |
iface.render()
|
| 60 |
|
| 61 |
-
print("Rendered iface")
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.queue(max_size=3).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from gpt4all import GPT4All
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
+
from diarizationlm import utils
|
| 5 |
|
| 6 |
title = "DiarizationLM GGUF inference on CPU"
|
| 7 |
|
| 8 |
description = """
|
| 9 |
+
A demo of the DiarizationLM model finetuned from Llama 2. In this demo, we run a 4-bit quantized GGUF model on CPU.
|
| 10 |
+
|
| 11 |
+
To learn more about DiarizationLM, check our paper: https://arxiv.org/abs/2401.03506
|
| 12 |
"""
|
| 13 |
|
| 14 |
model_path = "models"
|
| 15 |
model_name = "q4_k_m.gguf"
|
| 16 |
+
prompt_suffix = " --> "
|
| 17 |
+
completion_suffix = " [eod]"
|
| 18 |
+
|
| 19 |
hf_hub_download(repo_id="google/DiarizationLM-13b-Fisher-v1", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
| 20 |
|
| 21 |
print("Start the model init process")
|
| 22 |
+
model = GPT4All(model_name=model_name,
|
| 23 |
+
model_path=model_path,
|
| 24 |
+
allow_download = False,
|
| 25 |
+
evice="cpu")
|
| 26 |
print("Finish the model init process")
|
| 27 |
|
| 28 |
+
def generater(message, history):
|
| 29 |
+
prompt = message + prompt_suffix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
max_new_tokens = round(len(prompt) / 3.0 * 1.2)
|
| 31 |
outputs = []
|
| 32 |
+
for token in model.generate(prompt=prompt,
|
| 33 |
+
temp=0.0,
|
| 34 |
+
top_k=50,
|
| 35 |
+
top_p=0.9,
|
| 36 |
+
max_tokens=max_new_tokens,
|
| 37 |
+
streaming=True):
|
| 38 |
outputs.append(token)
|
| 39 |
+
completion = "".join(outputs)
|
| 40 |
+
if completion.endswith(" [eod]"):
|
| 41 |
+
transferred_completion = utils.transfer_llm_completion(completion, message)
|
| 42 |
+
yield transferred_completion
|
| 43 |
+
return
|
| 44 |
+
else:
|
| 45 |
+
yield completion
|
| 46 |
+
|
| 47 |
def vote(data: gr.LikeData):
|
| 48 |
if data.liked:
|
| 49 |
return
|
|
|
|
| 61 |
chatbot=chatbot,
|
| 62 |
additional_inputs=[],
|
| 63 |
examples=[
|
| 64 |
+
["<speaker:1> Hello, how are you doing <speaker:2> today? I am doing well. What about <speaker:1> you? I'm doing well, too. Thank you."],
|
| 65 |
]
|
| 66 |
)
|
| 67 |
|
|
|
|
|
|
|
| 68 |
with gr.Blocks() as demo:
|
| 69 |
chatbot.like(vote, None, None)
|
| 70 |
iface.render()
|
| 71 |
|
|
|
|
| 72 |
|
| 73 |
if __name__ == "__main__":
|
| 74 |
demo.queue(max_size=3).launch()
|