Spaces:
Paused
Paused
| import os | |
| import torch | |
| os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download') | |
| result_dir = os.path.join('./', 'results') | |
| os.makedirs(result_dir, exist_ok=True) | |
| is_shared_ui = True if "fffiloni/Paints-UNDO" in os.environ['SPACE_ID'] else False | |
| is_gpu_associated = torch.cuda.is_available() | |
| import subprocess | |
| from subprocess import getoutput | |
| if is_gpu_associated: | |
| gpu_info = getoutput('nvidia-smi') | |
| if("A10G" in gpu_info): | |
| which_gpu = "A10G" | |
| elif("T4" in gpu_info): | |
| which_gpu = "T4" | |
| else: | |
| which_gpu = "CPU" | |
| import functools | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import wd14tagger | |
| if is_gpu_associated: | |
| import memory_management | |
| import uuid | |
| from PIL import Image | |
| from diffusers_helper.code_cond import unet_add_coded_conds | |
| from diffusers_helper.cat_cond import unet_add_concat_conds | |
| from diffusers_helper.k_diffusion import KDiffusionSampler | |
| from diffusers import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from diffusers_vdm.pipeline import LatentVideoDiffusionPipeline | |
| from diffusers_vdm.utils import resize_and_center_crop, save_bcthw_as_mp4 | |
| class ModifiedUNet(UNet2DConditionModel): | |
| def from_config(cls, *args, **kwargs): | |
| m = super().from_config(*args, **kwargs) | |
| unet_add_concat_conds(unet=m, new_channels=4) | |
| unet_add_coded_conds(unet=m, added_number_count=1) | |
| return m | |
| model_name = 'lllyasviel/paints_undo_single_frame' | |
| tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder").to(torch.float16) | |
| vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae").to(torch.bfloat16) # bfloat16 vae | |
| unet = ModifiedUNet.from_pretrained(model_name, subfolder="unet").to(torch.float16) | |
| unet.set_attn_processor(AttnProcessor2_0()) | |
| vae.set_attn_processor(AttnProcessor2_0()) | |
| video_pipe = LatentVideoDiffusionPipeline.from_pretrained( | |
| 'lllyasviel/paints_undo_multi_frame', | |
| fp16=True | |
| ) | |
| if is_gpu_associated: | |
| memory_management.unload_all_models([ | |
| video_pipe.unet, video_pipe.vae, video_pipe.text_encoder, video_pipe.image_projection, video_pipe.image_encoder, | |
| unet, vae, text_encoder | |
| ]) | |
| k_sampler = KDiffusionSampler( | |
| unet=unet, | |
| timesteps=1000, | |
| linear_start=0.00085, | |
| linear_end=0.020, | |
| linear=True | |
| ) | |
| def find_best_bucket(h, w, options): | |
| min_metric = float('inf') | |
| best_bucket = None | |
| for (bucket_h, bucket_w) in options: | |
| metric = abs(h * bucket_w - w * bucket_h) | |
| if metric <= min_metric: | |
| min_metric = metric | |
| best_bucket = (bucket_h, bucket_w) | |
| return best_bucket | |
| def encode_cropped_prompt_77tokens(txt: str): | |
| memory_management.load_models_to_gpu(text_encoder) | |
| cond_ids = tokenizer(txt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt").input_ids.to(device=text_encoder.device) | |
| text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state | |
| return text_cond | |
| def pytorch2numpy(imgs): | |
| results = [] | |
| for x in imgs: | |
| y = x.movedim(0, -1) | |
| y = y * 127.5 + 127.5 | |
| y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results.append(y) | |
| return results | |
| def numpy2pytorch(imgs): | |
| h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0 | |
| h = h.movedim(-1, 1) | |
| return h | |
| def resize_without_crop(image, target_width, target_height): | |
| pil_image = Image.fromarray(image) | |
| resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
| return np.array(resized_image) | |
| def interrogator_process(x): | |
| if is_shared_ui: | |
| raise gr.Error("This Space only works in duplicated instances") | |
| if not is_gpu_associated: | |
| raise gr.Error("Please associate a T4 or A10G GPU for this Space") | |
| return wd14tagger.default_interrogator(x) | |
| def process(input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg, | |
| progress=gr.Progress()): | |
| if is_shared_ui: | |
| raise gr.Error("This Space only works in duplicated instances") | |
| if not is_gpu_associated: | |
| raise gr.Error("Please associate a T4 or A10G GPU for this Space") | |
| rng = torch.Generator(device=memory_management.gpu).manual_seed(int(seed)) | |
| memory_management.load_models_to_gpu(vae) | |
| fg = resize_and_center_crop(input_fg, image_width, image_height) | |
| concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) | |
| concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
| memory_management.load_models_to_gpu(text_encoder) | |
| conds = encode_cropped_prompt_77tokens(prompt) | |
| unconds = encode_cropped_prompt_77tokens(n_prompt) | |
| memory_management.load_models_to_gpu(unet) | |
| fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long) | |
| initial_latents = torch.zeros_like(concat_conds) | |
| concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype) | |
| latents = k_sampler( | |
| initial_latent=initial_latents, | |
| strength=1.0, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg, | |
| batch_size=len(input_undo_steps), | |
| generator=rng, | |
| prompt_embeds=conds, | |
| negative_prompt_embeds=unconds, | |
| cross_attention_kwargs={'concat_conds': concat_conds, 'coded_conds': fs}, | |
| same_noise_in_batch=True, | |
| progress_tqdm=functools.partial(progress.tqdm, desc='Generating Key Frames') | |
| ).to(vae.dtype) / vae.config.scaling_factor | |
| memory_management.load_models_to_gpu(vae) | |
| pixels = vae.decode(latents).sample | |
| pixels = pytorch2numpy(pixels) | |
| pixels = [fg] + pixels + [np.zeros_like(fg) + 255] | |
| return pixels | |
| def process_video_inner(image_1, image_2, prompt, seed=123, steps=25, cfg_scale=7.5, fs=3, progress_tqdm=None): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| frames = 16 | |
| target_height, target_width = find_best_bucket( | |
| image_1.shape[0], image_1.shape[1], | |
| options=[(320, 512), (384, 448), (448, 384), (512, 320)] | |
| ) | |
| image_1 = resize_and_center_crop(image_1, target_width=target_width, target_height=target_height) | |
| image_2 = resize_and_center_crop(image_2, target_width=target_width, target_height=target_height) | |
| input_frames = numpy2pytorch([image_1, image_2]) | |
| input_frames = input_frames.unsqueeze(0).movedim(1, 2) | |
| memory_management.load_models_to_gpu(video_pipe.text_encoder) | |
| positive_text_cond = video_pipe.encode_cropped_prompt_77tokens(prompt) | |
| negative_text_cond = video_pipe.encode_cropped_prompt_77tokens("") | |
| memory_management.load_models_to_gpu([video_pipe.image_projection, video_pipe.image_encoder]) | |
| input_frames = input_frames.to(device=video_pipe.image_encoder.device, dtype=video_pipe.image_encoder.dtype) | |
| positive_image_cond = video_pipe.encode_clip_vision(input_frames) | |
| positive_image_cond = video_pipe.image_projection(positive_image_cond) | |
| negative_image_cond = video_pipe.encode_clip_vision(torch.zeros_like(input_frames)) | |
| negative_image_cond = video_pipe.image_projection(negative_image_cond) | |
| memory_management.load_models_to_gpu([video_pipe.vae]) | |
| input_frames = input_frames.to(device=video_pipe.vae.device, dtype=video_pipe.vae.dtype) | |
| input_frame_latents, vae_hidden_states = video_pipe.encode_latents(input_frames, return_hidden_states=True) | |
| first_frame = input_frame_latents[:, :, 0] | |
| last_frame = input_frame_latents[:, :, 1] | |
| concat_cond = torch.stack([first_frame] + [torch.zeros_like(first_frame)] * (frames - 2) + [last_frame], dim=2) | |
| memory_management.load_models_to_gpu([video_pipe.unet]) | |
| latents = video_pipe( | |
| batch_size=1, | |
| steps=int(steps), | |
| guidance_scale=cfg_scale, | |
| positive_text_cond=positive_text_cond, | |
| negative_text_cond=negative_text_cond, | |
| positive_image_cond=positive_image_cond, | |
| negative_image_cond=negative_image_cond, | |
| concat_cond=concat_cond, | |
| fs=fs, | |
| progress_tqdm=progress_tqdm | |
| ) | |
| memory_management.load_models_to_gpu([video_pipe.vae]) | |
| video = video_pipe.decode_latents(latents, vae_hidden_states) | |
| return video, image_1, image_2 | |
| def process_video(keyframes, prompt, steps, cfg, fps, seed, progress=gr.Progress()): | |
| if is_shared_ui: | |
| raise gr.Error("This Space only works in duplicated instances") | |
| if not is_gpu_associated: | |
| raise gr.Error("Please associate a T4 or A10G GPU for this Space") | |
| result_frames = [] | |
| cropped_images = [] | |
| for i, (im1, im2) in enumerate(zip(keyframes[:-1], keyframes[1:])): | |
| im1 = np.array(Image.open(im1[0])) | |
| im2 = np.array(Image.open(im2[0])) | |
| frames, im1, im2 = process_video_inner( | |
| im1, im2, prompt, seed=seed + i, steps=steps, cfg_scale=cfg, fs=3, | |
| progress_tqdm=functools.partial(progress.tqdm, desc=f'Generating Videos ({i + 1}/{len(keyframes) - 1})') | |
| ) | |
| result_frames.append(frames[:, :, :-1, :, :]) | |
| cropped_images.append([im1, im2]) | |
| video = torch.cat(result_frames, dim=2) | |
| video = torch.flip(video, dims=[2]) | |
| uuid_name = str(uuid.uuid4()) | |
| output_filename = os.path.join(result_dir, uuid_name + '.mp4') | |
| Image.fromarray(cropped_images[0][0]).save(os.path.join(result_dir, uuid_name + '.png')) | |
| video = save_bcthw_as_mp4(video, output_filename, fps=fps) | |
| video = [x.cpu().numpy() for x in video] | |
| return output_filename, video | |
| css = """ | |
| div#warning-ready { | |
| background-color: #ecfdf5; | |
| padding: 0 16px 16px; | |
| margin: 20px 0; | |
| color: #030303!important; | |
| } | |
| div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { | |
| color: #057857!important; | |
| } | |
| div#warning-duplicate { | |
| background-color: #ebf5ff; | |
| padding: 0 16px 16px; | |
| margin: 20px 0; | |
| color: #030303!important; | |
| } | |
| div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
| color: #0f4592!important; | |
| } | |
| div#warning-duplicate strong { | |
| color: #0f4592; | |
| } | |
| p.actions { | |
| display: flex; | |
| align-items: center; | |
| margin: 20px 0; | |
| } | |
| div#warning-duplicate .actions a { | |
| display: inline-block; | |
| margin-right: 10px; | |
| } | |
| div#warning-setgpu { | |
| background-color: #fff4eb; | |
| padding: 0 16px 16px; | |
| margin: 20px 0; | |
| color: #030303!important; | |
| } | |
| div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p { | |
| color: #92220f!important; | |
| } | |
| div#warning-setgpu a, div#warning-setgpu b { | |
| color: #91230f; | |
| } | |
| div#warning-setgpu p.actions > a { | |
| display: inline-block; | |
| background: #1f1f23; | |
| border-radius: 40px; | |
| padding: 6px 24px; | |
| color: antiquewhite; | |
| text-decoration: none; | |
| font-weight: 600; | |
| font-size: 1.2em; | |
| } | |
| div#warning-setsleeptime { | |
| background-color: #fff4eb; | |
| padding: 10px 10px; | |
| margin: 0!important; | |
| color: #030303!important; | |
| } | |
| .custom-color { | |
| color: #030303 !important; | |
| } | |
| """ | |
| block = gr.Blocks(css=css).queue() | |
| with block: | |
| if is_shared_ui: | |
| top_description = gr.HTML(f''' | |
| <div class="gr-prose"> | |
| <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
| Attention: this Space need to be duplicated to work</h2> | |
| <p class="main-message custom-color"> | |
| To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br /> | |
| A T4 costs <strong>US$0.60/h</strong>. | |
| </p> | |
| <p class="actions custom-color"> | |
| <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
| </a> | |
| to start experimenting with this demo | |
| </p> | |
| </div> | |
| ''', elem_id="warning-duplicate") | |
| else: | |
| if(is_gpu_associated): | |
| top_description = gr.HTML(f''' | |
| <div class="gr-prose"> | |
| <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
| You have successfully associated a {which_gpu} GPU to the Paints UNDO Space π</h2> | |
| <p class="custom-color"> | |
| You will be billed by the minute from when you activated the GPU until when it is turned off. | |
| </p> | |
| </div> | |
| ''', elem_id="warning-ready") | |
| else: | |
| top_description = gr.HTML(f''' | |
| <div class="gr-prose"> | |
| <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
| You have successfully duplicated the Paints UNDO Space π</h2> | |
| <p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the app below. | |
| You will be billed by the minute from when you activate the GPU until when it is turned off.</p> | |
| <p class="actions custom-color"> | |
| <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">π₯ Set recommended GPU</a> | |
| </p> | |
| </div> | |
| ''', elem_id="warning-setgpu") | |
| gr.Markdown('# Paints-Undo') | |
| with gr.Accordion(label='Step 1: Upload Image and Generate Prompt', open=True): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_fg = gr.Image(sources=['upload'], type="numpy", label="Image", height=512) | |
| with gr.Column(): | |
| prompt_gen_button = gr.Button(value="Generate Prompt", interactive=False) | |
| prompt = gr.Textbox(label="Output Prompt", interactive=True) | |
| with gr.Accordion(label='Step 2: Generate Key Frames', open=True): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_undo_steps = gr.Dropdown(label="Operation Steps", value=[400, 600, 800, 900, 950, 999], | |
| choices=list(range(1000)), multiselect=True) | |
| seed = gr.Slider(label='Stage 1 Seed', minimum=0, maximum=50000, step=1, value=12345) | |
| image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) | |
| image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1) | |
| cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01) | |
| n_prompt = gr.Textbox(label="Negative Prompt", | |
| value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
| with gr.Column(): | |
| key_gen_button = gr.Button(value="Generate Key Frames", interactive=False) | |
| result_gallery = gr.Gallery(height=512, object_fit='contain', label='Outputs', columns=4) | |
| with gr.Accordion(label='Step 3: Generate All Videos', open=True): | |
| with gr.Row(): | |
| with gr.Column(): | |
| i2v_input_text = gr.Text(label='Prompts', value='1girl, masterpiece, best quality') | |
| i2v_seed = gr.Slider(label='Stage 2 Seed', minimum=0, maximum=50000, step=1, value=123) | |
| i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, | |
| elem_id="i2v_cfg_scale") | |
| i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", | |
| label="Sampling steps", value=50) | |
| i2v_fps = gr.Slider(minimum=1, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=4) | |
| with gr.Column(): | |
| i2v_end_btn = gr.Button("Generate Video", interactive=False) | |
| i2v_output_video = gr.Video(label="Generated Video", elem_id="output_vid", autoplay=True, | |
| show_share_button=True, height=512) | |
| with gr.Row(): | |
| i2v_output_images = gr.Gallery(height=512, label="Output Frames", object_fit="contain", columns=8) | |
| input_fg.change(lambda: ["", gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=False)], | |
| outputs=[prompt, prompt_gen_button, key_gen_button, i2v_end_btn]) | |
| prompt_gen_button.click( | |
| fn=interrogator_process, | |
| inputs=[input_fg], | |
| outputs=[prompt] | |
| ).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=False)], | |
| outputs=[prompt_gen_button, key_gen_button, i2v_end_btn]) | |
| key_gen_button.click( | |
| fn=process, | |
| inputs=[input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg], | |
| outputs=[result_gallery] | |
| ).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)], | |
| outputs=[prompt_gen_button, key_gen_button, i2v_end_btn]) | |
| i2v_end_btn.click( | |
| inputs=[result_gallery, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_fps, i2v_seed], | |
| outputs=[i2v_output_video, i2v_output_images], | |
| fn=process_video | |
| ) | |
| dbs = [ | |
| ['./imgs/1.jpg', 12345, 123], | |
| ['./imgs/2.jpg', 37000, 12345], | |
| ['./imgs/3.jpg', 3000, 3000], | |
| ] | |
| gr.Examples( | |
| examples=dbs, | |
| inputs=[input_fg, seed, i2v_seed], | |
| examples_per_page=1024 | |
| ) | |
| block.queue().launch() | |