Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
11ae595
1
Parent(s):
cb008a4
Refactor: use VQGAN model from github, remove local copy
Browse files- app/app_gradio.py +1 -1
- dalle_mini/vqgan_jax/README.md +0 -5
- dalle_mini/vqgan_jax/__init__.py +0 -0
- dalle_mini/vqgan_jax/configuration_vqgan.py +0 -40
- dalle_mini/vqgan_jax/modeling_flax_vqgan.py +0 -609
- dev/notebooks/demo/model-sweep.py +1 -5
- dev/notebooks/demo/tpu-demo.ipynb +2 -11
- dev/notebooks/encoding/vqgan-jax-encoding-with-captions.ipynb +1 -9
- dev/notebooks/encoding/vqgan-jax-encoding-yfcc100m.ipynb +9 -16
- dev/predictions/wandb-examples.py +1 -1
- dev/requirements.txt +16 -0
app/app_gradio.py
CHANGED
|
@@ -19,7 +19,7 @@ import numpy as np
|
|
| 19 |
import matplotlib.pyplot as plt
|
| 20 |
|
| 21 |
|
| 22 |
-
from
|
| 23 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 24 |
|
| 25 |
import gradio as gr
|
|
|
|
| 19 |
import matplotlib.pyplot as plt
|
| 20 |
|
| 21 |
|
| 22 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 23 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 24 |
|
| 25 |
import gradio as gr
|
dalle_mini/vqgan_jax/README.md
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
## vqgan-jax
|
| 2 |
-
|
| 3 |
-
Files copied from [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax/tree/main/vqgan_jax)
|
| 4 |
-
|
| 5 |
-
Required for VQGAN Jax model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dalle_mini/vqgan_jax/__init__.py
DELETED
|
File without changes
|
dalle_mini/vqgan_jax/configuration_vqgan.py
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
from typing import Tuple
|
| 2 |
-
|
| 3 |
-
from transformers import PretrainedConfig
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class VQGANConfig(PretrainedConfig):
|
| 7 |
-
def __init__(
|
| 8 |
-
self,
|
| 9 |
-
ch: int = 128,
|
| 10 |
-
out_ch: int = 3,
|
| 11 |
-
in_channels: int = 3,
|
| 12 |
-
num_res_blocks: int = 2,
|
| 13 |
-
resolution: int = 256,
|
| 14 |
-
z_channels: int = 256,
|
| 15 |
-
ch_mult: Tuple = (1, 1, 2, 2, 4),
|
| 16 |
-
attn_resolutions: int = (16,),
|
| 17 |
-
n_embed: int = 1024,
|
| 18 |
-
embed_dim: int = 256,
|
| 19 |
-
dropout: float = 0.0,
|
| 20 |
-
double_z: bool = False,
|
| 21 |
-
resamp_with_conv: bool = True,
|
| 22 |
-
give_pre_end: bool = False,
|
| 23 |
-
**kwargs,
|
| 24 |
-
):
|
| 25 |
-
super().__init__(**kwargs)
|
| 26 |
-
self.ch = ch
|
| 27 |
-
self.out_ch = out_ch
|
| 28 |
-
self.in_channels = in_channels
|
| 29 |
-
self.num_res_blocks = num_res_blocks
|
| 30 |
-
self.resolution = resolution
|
| 31 |
-
self.z_channels = z_channels
|
| 32 |
-
self.ch_mult = list(ch_mult)
|
| 33 |
-
self.attn_resolutions = list(attn_resolutions)
|
| 34 |
-
self.n_embed = n_embed
|
| 35 |
-
self.embed_dim = embed_dim
|
| 36 |
-
self.dropout = dropout
|
| 37 |
-
self.double_z = double_z
|
| 38 |
-
self.resamp_with_conv = resamp_with_conv
|
| 39 |
-
self.give_pre_end = give_pre_end
|
| 40 |
-
self.num_resolutions = len(ch_mult)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dalle_mini/vqgan_jax/modeling_flax_vqgan.py
DELETED
|
@@ -1,609 +0,0 @@
|
|
| 1 |
-
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
|
| 2 |
-
|
| 3 |
-
from functools import partial
|
| 4 |
-
from typing import Tuple
|
| 5 |
-
import math
|
| 6 |
-
|
| 7 |
-
import jax
|
| 8 |
-
import jax.numpy as jnp
|
| 9 |
-
import numpy as np
|
| 10 |
-
import flax.linen as nn
|
| 11 |
-
from flax.core.frozen_dict import FrozenDict
|
| 12 |
-
|
| 13 |
-
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
| 14 |
-
|
| 15 |
-
from .configuration_vqgan import VQGANConfig
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class Upsample(nn.Module):
|
| 19 |
-
in_channels: int
|
| 20 |
-
with_conv: bool
|
| 21 |
-
dtype: jnp.dtype = jnp.float32
|
| 22 |
-
|
| 23 |
-
def setup(self):
|
| 24 |
-
if self.with_conv:
|
| 25 |
-
self.conv = nn.Conv(
|
| 26 |
-
self.in_channels,
|
| 27 |
-
kernel_size=(3, 3),
|
| 28 |
-
strides=(1, 1),
|
| 29 |
-
padding=((1, 1), (1, 1)),
|
| 30 |
-
dtype=self.dtype,
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
-
def __call__(self, hidden_states):
|
| 34 |
-
batch, height, width, channels = hidden_states.shape
|
| 35 |
-
hidden_states = jax.image.resize(
|
| 36 |
-
hidden_states,
|
| 37 |
-
shape=(batch, height * 2, width * 2, channels),
|
| 38 |
-
method="nearest",
|
| 39 |
-
)
|
| 40 |
-
if self.with_conv:
|
| 41 |
-
hidden_states = self.conv(hidden_states)
|
| 42 |
-
return hidden_states
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
class Downsample(nn.Module):
|
| 46 |
-
in_channels: int
|
| 47 |
-
with_conv: bool
|
| 48 |
-
dtype: jnp.dtype = jnp.float32
|
| 49 |
-
|
| 50 |
-
def setup(self):
|
| 51 |
-
if self.with_conv:
|
| 52 |
-
self.conv = nn.Conv(
|
| 53 |
-
self.in_channels,
|
| 54 |
-
kernel_size=(3, 3),
|
| 55 |
-
strides=(2, 2),
|
| 56 |
-
padding="VALID",
|
| 57 |
-
dtype=self.dtype,
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
def __call__(self, hidden_states):
|
| 61 |
-
if self.with_conv:
|
| 62 |
-
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
|
| 63 |
-
hidden_states = jnp.pad(hidden_states, pad_width=pad)
|
| 64 |
-
hidden_states = self.conv(hidden_states)
|
| 65 |
-
else:
|
| 66 |
-
hidden_states = nn.avg_pool(hidden_states, window_shape=(2, 2), strides=(2, 2), padding="VALID")
|
| 67 |
-
return hidden_states
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
class ResnetBlock(nn.Module):
|
| 71 |
-
in_channels: int
|
| 72 |
-
out_channels: int = None
|
| 73 |
-
use_conv_shortcut: bool = False
|
| 74 |
-
temb_channels: int = 512
|
| 75 |
-
dropout_prob: float = 0.0
|
| 76 |
-
dtype: jnp.dtype = jnp.float32
|
| 77 |
-
|
| 78 |
-
def setup(self):
|
| 79 |
-
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
|
| 80 |
-
|
| 81 |
-
self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
| 82 |
-
self.conv1 = nn.Conv(
|
| 83 |
-
self.out_channels_,
|
| 84 |
-
kernel_size=(3, 3),
|
| 85 |
-
strides=(1, 1),
|
| 86 |
-
padding=((1, 1), (1, 1)),
|
| 87 |
-
dtype=self.dtype,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
if self.temb_channels:
|
| 91 |
-
self.temb_proj = nn.Dense(self.out_channels_, dtype=self.dtype)
|
| 92 |
-
|
| 93 |
-
self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
| 94 |
-
self.dropout = nn.Dropout(self.dropout_prob)
|
| 95 |
-
self.conv2 = nn.Conv(
|
| 96 |
-
self.out_channels_,
|
| 97 |
-
kernel_size=(3, 3),
|
| 98 |
-
strides=(1, 1),
|
| 99 |
-
padding=((1, 1), (1, 1)),
|
| 100 |
-
dtype=self.dtype,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
if self.in_channels != self.out_channels_:
|
| 104 |
-
if self.use_conv_shortcut:
|
| 105 |
-
self.conv_shortcut = nn.Conv(
|
| 106 |
-
self.out_channels_,
|
| 107 |
-
kernel_size=(3, 3),
|
| 108 |
-
strides=(1, 1),
|
| 109 |
-
padding=((1, 1), (1, 1)),
|
| 110 |
-
dtype=self.dtype,
|
| 111 |
-
)
|
| 112 |
-
else:
|
| 113 |
-
self.nin_shortcut = nn.Conv(
|
| 114 |
-
self.out_channels_,
|
| 115 |
-
kernel_size=(1, 1),
|
| 116 |
-
strides=(1, 1),
|
| 117 |
-
padding="VALID",
|
| 118 |
-
dtype=self.dtype,
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
| 122 |
-
residual = hidden_states
|
| 123 |
-
hidden_states = self.norm1(hidden_states)
|
| 124 |
-
hidden_states = nn.swish(hidden_states)
|
| 125 |
-
hidden_states = self.conv1(hidden_states)
|
| 126 |
-
|
| 127 |
-
if temb is not None:
|
| 128 |
-
hidden_states = hidden_states + self.temb_proj(nn.swish(temb))[:, :, None, None] # TODO: check shapes
|
| 129 |
-
|
| 130 |
-
hidden_states = self.norm2(hidden_states)
|
| 131 |
-
hidden_states = nn.swish(hidden_states)
|
| 132 |
-
hidden_states = self.dropout(hidden_states, deterministic)
|
| 133 |
-
hidden_states = self.conv2(hidden_states)
|
| 134 |
-
|
| 135 |
-
if self.in_channels != self.out_channels_:
|
| 136 |
-
if self.use_conv_shortcut:
|
| 137 |
-
residual = self.conv_shortcut(residual)
|
| 138 |
-
else:
|
| 139 |
-
residual = self.nin_shortcut(residual)
|
| 140 |
-
|
| 141 |
-
return hidden_states + residual
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
class AttnBlock(nn.Module):
|
| 145 |
-
in_channels: int
|
| 146 |
-
dtype: jnp.dtype = jnp.float32
|
| 147 |
-
|
| 148 |
-
def setup(self):
|
| 149 |
-
conv = partial(
|
| 150 |
-
nn.Conv, self.in_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
| 154 |
-
self.q, self.k, self.v = conv(), conv(), conv()
|
| 155 |
-
self.proj_out = conv()
|
| 156 |
-
|
| 157 |
-
def __call__(self, hidden_states):
|
| 158 |
-
residual = hidden_states
|
| 159 |
-
hidden_states = self.norm(hidden_states)
|
| 160 |
-
|
| 161 |
-
query = self.q(hidden_states)
|
| 162 |
-
key = self.k(hidden_states)
|
| 163 |
-
value = self.v(hidden_states)
|
| 164 |
-
|
| 165 |
-
# compute attentions
|
| 166 |
-
batch, height, width, channels = query.shape
|
| 167 |
-
query = query.reshape((batch, height * width, channels))
|
| 168 |
-
key = key.reshape((batch, height * width, channels))
|
| 169 |
-
attn_weights = jnp.einsum("...qc,...kc->...qk", query, key)
|
| 170 |
-
attn_weights = attn_weights * (int(channels) ** -0.5)
|
| 171 |
-
attn_weights = nn.softmax(attn_weights, axis=2)
|
| 172 |
-
|
| 173 |
-
## attend to values
|
| 174 |
-
value = value.reshape((batch, height * width, channels))
|
| 175 |
-
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
|
| 176 |
-
hidden_states = hidden_states.reshape((batch, height, width, channels))
|
| 177 |
-
|
| 178 |
-
hidden_states = self.proj_out(hidden_states)
|
| 179 |
-
hidden_states = hidden_states + residual
|
| 180 |
-
return hidden_states
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
class UpsamplingBlock(nn.Module):
|
| 184 |
-
config: VQGANConfig
|
| 185 |
-
curr_res: int
|
| 186 |
-
block_idx: int
|
| 187 |
-
dtype: jnp.dtype = jnp.float32
|
| 188 |
-
|
| 189 |
-
def setup(self):
|
| 190 |
-
if self.block_idx == self.config.num_resolutions - 1:
|
| 191 |
-
block_in = self.config.ch * self.config.ch_mult[-1]
|
| 192 |
-
else:
|
| 193 |
-
block_in = self.config.ch * self.config.ch_mult[self.block_idx + 1]
|
| 194 |
-
|
| 195 |
-
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
| 196 |
-
self.temb_ch = 0
|
| 197 |
-
|
| 198 |
-
res_blocks = []
|
| 199 |
-
attn_blocks = []
|
| 200 |
-
for _ in range(self.config.num_res_blocks + 1):
|
| 201 |
-
res_blocks.append(
|
| 202 |
-
ResnetBlock(
|
| 203 |
-
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
| 204 |
-
)
|
| 205 |
-
)
|
| 206 |
-
block_in = block_out
|
| 207 |
-
if self.curr_res in self.config.attn_resolutions:
|
| 208 |
-
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
| 209 |
-
|
| 210 |
-
self.block = res_blocks
|
| 211 |
-
self.attn = attn_blocks
|
| 212 |
-
|
| 213 |
-
self.upsample = None
|
| 214 |
-
if self.block_idx != 0:
|
| 215 |
-
self.upsample = Upsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
| 216 |
-
|
| 217 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
| 218 |
-
for res_block in self.block:
|
| 219 |
-
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
| 220 |
-
for attn_block in self.attn:
|
| 221 |
-
hidden_states = attn_block(hidden_states)
|
| 222 |
-
|
| 223 |
-
if self.upsample is not None:
|
| 224 |
-
hidden_states = self.upsample(hidden_states)
|
| 225 |
-
|
| 226 |
-
return hidden_states
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
class DownsamplingBlock(nn.Module):
|
| 230 |
-
config: VQGANConfig
|
| 231 |
-
curr_res: int
|
| 232 |
-
block_idx: int
|
| 233 |
-
dtype: jnp.dtype = jnp.float32
|
| 234 |
-
|
| 235 |
-
def setup(self):
|
| 236 |
-
in_ch_mult = (1,) + tuple(self.config.ch_mult)
|
| 237 |
-
block_in = self.config.ch * in_ch_mult[self.block_idx]
|
| 238 |
-
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
| 239 |
-
self.temb_ch = 0
|
| 240 |
-
|
| 241 |
-
res_blocks = []
|
| 242 |
-
attn_blocks = []
|
| 243 |
-
for _ in range(self.config.num_res_blocks):
|
| 244 |
-
res_blocks.append(
|
| 245 |
-
ResnetBlock(
|
| 246 |
-
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
| 247 |
-
)
|
| 248 |
-
)
|
| 249 |
-
block_in = block_out
|
| 250 |
-
if self.curr_res in self.config.attn_resolutions:
|
| 251 |
-
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
| 252 |
-
|
| 253 |
-
self.block = res_blocks
|
| 254 |
-
self.attn = attn_blocks
|
| 255 |
-
|
| 256 |
-
self.downsample = None
|
| 257 |
-
if self.block_idx != self.config.num_resolutions - 1:
|
| 258 |
-
self.downsample = Downsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
| 259 |
-
|
| 260 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
| 261 |
-
for res_block in self.block:
|
| 262 |
-
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
| 263 |
-
for attn_block in self.attn:
|
| 264 |
-
hidden_states = attn_block(hidden_states)
|
| 265 |
-
|
| 266 |
-
if self.downsample is not None:
|
| 267 |
-
hidden_states = self.downsample(hidden_states)
|
| 268 |
-
|
| 269 |
-
return hidden_states
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
class MidBlock(nn.Module):
|
| 273 |
-
in_channels: int
|
| 274 |
-
temb_channels: int
|
| 275 |
-
dropout: float
|
| 276 |
-
dtype: jnp.dtype = jnp.float32
|
| 277 |
-
|
| 278 |
-
def setup(self):
|
| 279 |
-
self.block_1 = ResnetBlock(
|
| 280 |
-
self.in_channels,
|
| 281 |
-
self.in_channels,
|
| 282 |
-
temb_channels=self.temb_channels,
|
| 283 |
-
dropout_prob=self.dropout,
|
| 284 |
-
dtype=self.dtype,
|
| 285 |
-
)
|
| 286 |
-
self.attn_1 = AttnBlock(self.in_channels, dtype=self.dtype)
|
| 287 |
-
self.block_2 = ResnetBlock(
|
| 288 |
-
self.in_channels,
|
| 289 |
-
self.in_channels,
|
| 290 |
-
temb_channels=self.temb_channels,
|
| 291 |
-
dropout_prob=self.dropout,
|
| 292 |
-
dtype=self.dtype,
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
| 296 |
-
hidden_states = self.block_1(hidden_states, temb, deterministic=deterministic)
|
| 297 |
-
hidden_states = self.attn_1(hidden_states)
|
| 298 |
-
hidden_states = self.block_2(hidden_states, temb, deterministic=deterministic)
|
| 299 |
-
return hidden_states
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
class Encoder(nn.Module):
|
| 303 |
-
config: VQGANConfig
|
| 304 |
-
dtype: jnp.dtype = jnp.float32
|
| 305 |
-
|
| 306 |
-
def setup(self):
|
| 307 |
-
self.temb_ch = 0
|
| 308 |
-
|
| 309 |
-
# downsampling
|
| 310 |
-
self.conv_in = nn.Conv(
|
| 311 |
-
self.config.ch,
|
| 312 |
-
kernel_size=(3, 3),
|
| 313 |
-
strides=(1, 1),
|
| 314 |
-
padding=((1, 1), (1, 1)),
|
| 315 |
-
dtype=self.dtype,
|
| 316 |
-
)
|
| 317 |
-
|
| 318 |
-
curr_res = self.config.resolution
|
| 319 |
-
downsample_blocks = []
|
| 320 |
-
for i_level in range(self.config.num_resolutions):
|
| 321 |
-
downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
| 322 |
-
|
| 323 |
-
if i_level != self.config.num_resolutions - 1:
|
| 324 |
-
curr_res = curr_res // 2
|
| 325 |
-
self.down = downsample_blocks
|
| 326 |
-
|
| 327 |
-
# middle
|
| 328 |
-
mid_channels = self.config.ch * self.config.ch_mult[-1]
|
| 329 |
-
self.mid = MidBlock(mid_channels, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
| 330 |
-
|
| 331 |
-
# end
|
| 332 |
-
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
| 333 |
-
self.conv_out = nn.Conv(
|
| 334 |
-
2 * self.config.z_channels if self.config.double_z else self.config.z_channels,
|
| 335 |
-
kernel_size=(3, 3),
|
| 336 |
-
strides=(1, 1),
|
| 337 |
-
padding=((1, 1), (1, 1)),
|
| 338 |
-
dtype=self.dtype,
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
def __call__(self, pixel_values, deterministic: bool = True):
|
| 342 |
-
# timestep embedding
|
| 343 |
-
temb = None
|
| 344 |
-
|
| 345 |
-
# downsampling
|
| 346 |
-
hidden_states = self.conv_in(pixel_values)
|
| 347 |
-
for block in self.down:
|
| 348 |
-
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
| 349 |
-
|
| 350 |
-
# middle
|
| 351 |
-
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
| 352 |
-
|
| 353 |
-
# end
|
| 354 |
-
hidden_states = self.norm_out(hidden_states)
|
| 355 |
-
hidden_states = nn.swish(hidden_states)
|
| 356 |
-
hidden_states = self.conv_out(hidden_states)
|
| 357 |
-
|
| 358 |
-
return hidden_states
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
class Decoder(nn.Module):
|
| 362 |
-
config: VQGANConfig
|
| 363 |
-
dtype: jnp.dtype = jnp.float32
|
| 364 |
-
|
| 365 |
-
def setup(self):
|
| 366 |
-
self.temb_ch = 0
|
| 367 |
-
|
| 368 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 369 |
-
block_in = self.config.ch * self.config.ch_mult[self.config.num_resolutions - 1]
|
| 370 |
-
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
|
| 371 |
-
self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
|
| 372 |
-
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
| 373 |
-
|
| 374 |
-
# z to block_in
|
| 375 |
-
self.conv_in = nn.Conv(
|
| 376 |
-
block_in,
|
| 377 |
-
kernel_size=(3, 3),
|
| 378 |
-
strides=(1, 1),
|
| 379 |
-
padding=((1, 1), (1, 1)),
|
| 380 |
-
dtype=self.dtype,
|
| 381 |
-
)
|
| 382 |
-
|
| 383 |
-
# middle
|
| 384 |
-
self.mid = MidBlock(block_in, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
| 385 |
-
|
| 386 |
-
# upsampling
|
| 387 |
-
upsample_blocks = []
|
| 388 |
-
for i_level in reversed(range(self.config.num_resolutions)):
|
| 389 |
-
upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
| 390 |
-
if i_level != 0:
|
| 391 |
-
curr_res = curr_res * 2
|
| 392 |
-
self.up = list(reversed(upsample_blocks)) # reverse to get consistent order
|
| 393 |
-
|
| 394 |
-
# end
|
| 395 |
-
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
| 396 |
-
self.conv_out = nn.Conv(
|
| 397 |
-
self.config.out_ch,
|
| 398 |
-
kernel_size=(3, 3),
|
| 399 |
-
strides=(1, 1),
|
| 400 |
-
padding=((1, 1), (1, 1)),
|
| 401 |
-
dtype=self.dtype,
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
def __call__(self, hidden_states, deterministic: bool = True):
|
| 405 |
-
# timestep embedding
|
| 406 |
-
temb = None
|
| 407 |
-
|
| 408 |
-
# z to block_in
|
| 409 |
-
hidden_states = self.conv_in(hidden_states)
|
| 410 |
-
|
| 411 |
-
# middle
|
| 412 |
-
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
| 413 |
-
|
| 414 |
-
# upsampling
|
| 415 |
-
for block in reversed(self.up):
|
| 416 |
-
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
| 417 |
-
|
| 418 |
-
# end
|
| 419 |
-
if self.config.give_pre_end:
|
| 420 |
-
return hidden_states
|
| 421 |
-
|
| 422 |
-
hidden_states = self.norm_out(hidden_states)
|
| 423 |
-
hidden_states = nn.swish(hidden_states)
|
| 424 |
-
hidden_states = self.conv_out(hidden_states)
|
| 425 |
-
|
| 426 |
-
return hidden_states
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
class VectorQuantizer(nn.Module):
|
| 430 |
-
"""
|
| 431 |
-
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
| 432 |
-
____________________________________________
|
| 433 |
-
Discretization bottleneck part of the VQ-VAE.
|
| 434 |
-
Inputs:
|
| 435 |
-
- n_e : number of embeddings
|
| 436 |
-
- e_dim : dimension of embedding
|
| 437 |
-
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
| 438 |
-
_____________________________________________
|
| 439 |
-
"""
|
| 440 |
-
|
| 441 |
-
config: VQGANConfig
|
| 442 |
-
dtype: jnp.dtype = jnp.float32
|
| 443 |
-
|
| 444 |
-
def setup(self):
|
| 445 |
-
self.embedding = nn.Embed(self.config.n_embed, self.config.embed_dim, dtype=self.dtype) # TODO: init
|
| 446 |
-
|
| 447 |
-
def __call__(self, hidden_states):
|
| 448 |
-
"""
|
| 449 |
-
Inputs the output of the encoder network z and maps it to a discrete
|
| 450 |
-
one-hot vector that is the index of the closest embedding vector e_j
|
| 451 |
-
z (continuous) -> z_q (discrete)
|
| 452 |
-
z.shape = (batch, channel, height, width)
|
| 453 |
-
quantization pipeline:
|
| 454 |
-
1. get encoder input (B,C,H,W)
|
| 455 |
-
2. flatten input to (B*H*W,C)
|
| 456 |
-
"""
|
| 457 |
-
# flatten
|
| 458 |
-
hidden_states_flattended = hidden_states.reshape((-1, self.config.embed_dim))
|
| 459 |
-
|
| 460 |
-
# dummy op to init the weights, so we can access them below
|
| 461 |
-
self.embedding(jnp.ones((1, 1), dtype="i4"))
|
| 462 |
-
|
| 463 |
-
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 464 |
-
emb_weights = self.variables["params"]["embedding"]["embedding"]
|
| 465 |
-
distance = (
|
| 466 |
-
jnp.sum(hidden_states_flattended ** 2, axis=1, keepdims=True)
|
| 467 |
-
+ jnp.sum(emb_weights ** 2, axis=1)
|
| 468 |
-
- 2 * jnp.dot(hidden_states_flattended, emb_weights.T)
|
| 469 |
-
)
|
| 470 |
-
|
| 471 |
-
# get quantized latent vectors
|
| 472 |
-
min_encoding_indices = jnp.argmin(distance, axis=1)
|
| 473 |
-
z_q = self.embedding(min_encoding_indices).reshape(hidden_states.shape)
|
| 474 |
-
|
| 475 |
-
# reshape to (batch, num_tokens)
|
| 476 |
-
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
|
| 477 |
-
|
| 478 |
-
# compute the codebook_loss (q_loss) outside the model
|
| 479 |
-
# here we return the embeddings and indices
|
| 480 |
-
return z_q, min_encoding_indices
|
| 481 |
-
|
| 482 |
-
def get_codebook_entry(self, indices, shape=None):
|
| 483 |
-
# indices are expected to be of shape (batch, num_tokens)
|
| 484 |
-
# get quantized latent vectors
|
| 485 |
-
batch, num_tokens = indices.shape
|
| 486 |
-
z_q = self.embedding(indices)
|
| 487 |
-
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1)
|
| 488 |
-
return z_q
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
class VQModule(nn.Module):
|
| 492 |
-
config: VQGANConfig
|
| 493 |
-
dtype: jnp.dtype = jnp.float32
|
| 494 |
-
|
| 495 |
-
def setup(self):
|
| 496 |
-
self.encoder = Encoder(self.config, dtype=self.dtype)
|
| 497 |
-
self.decoder = Decoder(self.config, dtype=self.dtype)
|
| 498 |
-
self.quantize = VectorQuantizer(self.config, dtype=self.dtype)
|
| 499 |
-
self.quant_conv = nn.Conv(
|
| 500 |
-
self.config.embed_dim,
|
| 501 |
-
kernel_size=(1, 1),
|
| 502 |
-
strides=(1, 1),
|
| 503 |
-
padding="VALID",
|
| 504 |
-
dtype=self.dtype,
|
| 505 |
-
)
|
| 506 |
-
self.post_quant_conv = nn.Conv(
|
| 507 |
-
self.config.z_channels,
|
| 508 |
-
kernel_size=(1, 1),
|
| 509 |
-
strides=(1, 1),
|
| 510 |
-
padding="VALID",
|
| 511 |
-
dtype=self.dtype,
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
def encode(self, pixel_values, deterministic: bool = True):
|
| 515 |
-
hidden_states = self.encoder(pixel_values, deterministic=deterministic)
|
| 516 |
-
hidden_states = self.quant_conv(hidden_states)
|
| 517 |
-
quant_states, indices = self.quantize(hidden_states)
|
| 518 |
-
return quant_states, indices
|
| 519 |
-
|
| 520 |
-
def decode(self, hidden_states, deterministic: bool = True):
|
| 521 |
-
hidden_states = self.post_quant_conv(hidden_states)
|
| 522 |
-
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
|
| 523 |
-
return hidden_states
|
| 524 |
-
|
| 525 |
-
def decode_code(self, code_b):
|
| 526 |
-
hidden_states = self.quantize.get_codebook_entry(code_b)
|
| 527 |
-
hidden_states = self.decode(hidden_states)
|
| 528 |
-
return hidden_states
|
| 529 |
-
|
| 530 |
-
def __call__(self, pixel_values, deterministic: bool = True):
|
| 531 |
-
quant_states, indices = self.encode(pixel_values, deterministic)
|
| 532 |
-
hidden_states = self.decode(quant_states, deterministic)
|
| 533 |
-
return hidden_states, indices
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
class VQGANPreTrainedModel(FlaxPreTrainedModel):
|
| 537 |
-
"""
|
| 538 |
-
An abstract class to handle weights initialization and a simple interface
|
| 539 |
-
for downloading and loading pretrained models.
|
| 540 |
-
"""
|
| 541 |
-
|
| 542 |
-
config_class = VQGANConfig
|
| 543 |
-
base_model_prefix = "model"
|
| 544 |
-
module_class: nn.Module = None
|
| 545 |
-
|
| 546 |
-
def __init__(
|
| 547 |
-
self,
|
| 548 |
-
config: VQGANConfig,
|
| 549 |
-
input_shape: Tuple = (1, 256, 256, 3),
|
| 550 |
-
seed: int = 0,
|
| 551 |
-
dtype: jnp.dtype = jnp.float32,
|
| 552 |
-
**kwargs,
|
| 553 |
-
):
|
| 554 |
-
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
| 555 |
-
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
| 556 |
-
|
| 557 |
-
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
| 558 |
-
# init input tensors
|
| 559 |
-
pixel_values = jnp.zeros(input_shape, dtype=jnp.float32)
|
| 560 |
-
params_rng, dropout_rng = jax.random.split(rng)
|
| 561 |
-
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 562 |
-
|
| 563 |
-
return self.module.init(rngs, pixel_values)["params"]
|
| 564 |
-
|
| 565 |
-
def encode(self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
| 566 |
-
# Handle any PRNG if needed
|
| 567 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
| 568 |
-
|
| 569 |
-
return self.module.apply(
|
| 570 |
-
{"params": params or self.params}, jnp.array(pixel_values), not train, rngs=rngs, method=self.module.encode
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
-
def decode(self, hidden_states, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
| 574 |
-
# Handle any PRNG if needed
|
| 575 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
| 576 |
-
|
| 577 |
-
return self.module.apply(
|
| 578 |
-
{"params": params or self.params},
|
| 579 |
-
jnp.array(hidden_states),
|
| 580 |
-
not train,
|
| 581 |
-
rngs=rngs,
|
| 582 |
-
method=self.module.decode,
|
| 583 |
-
)
|
| 584 |
-
|
| 585 |
-
def decode_code(self, indices, params: dict = None):
|
| 586 |
-
return self.module.apply(
|
| 587 |
-
{"params": params or self.params}, jnp.array(indices, dtype="i4"), method=self.module.decode_code
|
| 588 |
-
)
|
| 589 |
-
|
| 590 |
-
def __call__(
|
| 591 |
-
self,
|
| 592 |
-
pixel_values,
|
| 593 |
-
params: dict = None,
|
| 594 |
-
dropout_rng: jax.random.PRNGKey = None,
|
| 595 |
-
train: bool = False,
|
| 596 |
-
):
|
| 597 |
-
# Handle any PRNG if needed
|
| 598 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
| 599 |
-
|
| 600 |
-
return self.module.apply(
|
| 601 |
-
{"params": params or self.params},
|
| 602 |
-
jnp.array(pixel_values),
|
| 603 |
-
not train,
|
| 604 |
-
rngs=rngs,
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
class VQModel(VQGANPreTrainedModel):
|
| 609 |
-
module_class = VQModule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/model-sweep.py
CHANGED
|
@@ -11,19 +11,15 @@ from flax.jax_utils import replicate, unreplicate
|
|
| 11 |
from transformers.models.bart.modeling_flax_bart import *
|
| 12 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 13 |
|
| 14 |
-
import io
|
| 15 |
-
|
| 16 |
-
import requests
|
| 17 |
from PIL import Image
|
| 18 |
import numpy as np
|
| 19 |
import matplotlib.pyplot as plt
|
| 20 |
|
| 21 |
-
import torch
|
| 22 |
import torchvision.transforms as T
|
| 23 |
import torchvision.transforms.functional as TF
|
| 24 |
from torchvision.transforms import InterpolationMode
|
| 25 |
|
| 26 |
-
from
|
| 27 |
|
| 28 |
# TODO: set those args in a config file
|
| 29 |
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
|
|
|
| 11 |
from transformers.models.bart.modeling_flax_bart import *
|
| 12 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
import numpy as np
|
| 16 |
import matplotlib.pyplot as plt
|
| 17 |
|
|
|
|
| 18 |
import torchvision.transforms as T
|
| 19 |
import torchvision.transforms.functional as TF
|
| 20 |
from torchvision.transforms import InterpolationMode
|
| 21 |
|
| 22 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 23 |
|
| 24 |
# TODO: set those args in a config file
|
| 25 |
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
dev/notebooks/demo/tpu-demo.ipynb
CHANGED
|
@@ -51,14 +51,6 @@
|
|
| 51 |
"jax.devices()"
|
| 52 |
]
|
| 53 |
},
|
| 54 |
-
{
|
| 55 |
-
"cell_type": "markdown",
|
| 56 |
-
"id": "d408065c",
|
| 57 |
-
"metadata": {},
|
| 58 |
-
"source": [
|
| 59 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model by Suraj, and other utilities. You can also `cd` to the directory that contains your checkout of [`vqgan-jax`](https://github.com/patil-suraj/vqgan-jax.git)"
|
| 60 |
-
]
|
| 61 |
-
},
|
| 62 |
{
|
| 63 |
"cell_type": "code",
|
| 64 |
"execution_count": null,
|
|
@@ -66,8 +58,7 @@
|
|
| 66 |
"metadata": {},
|
| 67 |
"outputs": [],
|
| 68 |
"source": [
|
| 69 |
-
"from
|
| 70 |
-
"#%cd /content/vqgan-jax"
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
@@ -447,7 +438,7 @@
|
|
| 447 |
"name": "python",
|
| 448 |
"nbconvert_exporter": "python",
|
| 449 |
"pygments_lexer": "ipython3",
|
| 450 |
-
"version": "3.8.
|
| 451 |
}
|
| 452 |
},
|
| 453 |
"nbformat": 4,
|
|
|
|
| 51 |
"jax.devices()"
|
| 52 |
]
|
| 53 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
{
|
| 55 |
"cell_type": "code",
|
| 56 |
"execution_count": null,
|
|
|
|
| 58 |
"metadata": {},
|
| 59 |
"outputs": [],
|
| 60 |
"source": [
|
| 61 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
|
|
|
| 62 |
]
|
| 63 |
},
|
| 64 |
{
|
|
|
|
| 438 |
"name": "python",
|
| 439 |
"nbconvert_exporter": "python",
|
| 440 |
"pygments_lexer": "ipython3",
|
| 441 |
+
"version": "3.8.10"
|
| 442 |
}
|
| 443 |
},
|
| 444 |
"nbformat": 4,
|
dev/notebooks/encoding/vqgan-jax-encoding-with-captions.ipynb
CHANGED
|
@@ -50,14 +50,6 @@
|
|
| 50 |
"## VQGAN-JAX model"
|
| 51 |
]
|
| 52 |
},
|
| 53 |
-
{
|
| 54 |
-
"cell_type": "markdown",
|
| 55 |
-
"id": "bb408f6c",
|
| 56 |
-
"metadata": {},
|
| 57 |
-
"source": [
|
| 58 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
| 59 |
-
]
|
| 60 |
-
},
|
| 61 |
{
|
| 62 |
"cell_type": "code",
|
| 63 |
"execution_count": 2,
|
|
@@ -65,7 +57,7 @@
|
|
| 65 |
"metadata": {},
|
| 66 |
"outputs": [],
|
| 67 |
"source": [
|
| 68 |
-
"from
|
| 69 |
]
|
| 70 |
},
|
| 71 |
{
|
|
|
|
| 50 |
"## VQGAN-JAX model"
|
| 51 |
]
|
| 52 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
{
|
| 54 |
"cell_type": "code",
|
| 55 |
"execution_count": 2,
|
|
|
|
| 57 |
"metadata": {},
|
| 58 |
"outputs": [],
|
| 59 |
"source": [
|
| 60 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
| 61 |
]
|
| 62 |
},
|
| 63 |
{
|
dev/notebooks/encoding/vqgan-jax-encoding-yfcc100m.ipynb
CHANGED
|
@@ -52,14 +52,6 @@
|
|
| 52 |
"## VQGAN-JAX model"
|
| 53 |
]
|
| 54 |
},
|
| 55 |
-
{
|
| 56 |
-
"cell_type": "markdown",
|
| 57 |
-
"id": "bb408f6c",
|
| 58 |
-
"metadata": {},
|
| 59 |
-
"source": [
|
| 60 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
| 61 |
-
]
|
| 62 |
-
},
|
| 63 |
{
|
| 64 |
"cell_type": "code",
|
| 65 |
"execution_count": 93,
|
|
@@ -67,7 +59,7 @@
|
|
| 67 |
"metadata": {},
|
| 68 |
"outputs": [],
|
| 69 |
"source": [
|
| 70 |
-
"from
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
@@ -1111,9 +1103,13 @@
|
|
| 1111 |
}
|
| 1112 |
],
|
| 1113 |
"metadata": {
|
|
|
|
|
|
|
|
|
|
| 1114 |
"kernelspec": {
|
| 1115 |
-
"
|
| 1116 |
-
"
|
|
|
|
| 1117 |
},
|
| 1118 |
"language_info": {
|
| 1119 |
"codemirror_mode": {
|
|
@@ -1125,12 +1121,9 @@
|
|
| 1125 |
"name": "python",
|
| 1126 |
"nbconvert_exporter": "python",
|
| 1127 |
"pygments_lexer": "ipython3",
|
| 1128 |
-
"version": "3.
|
| 1129 |
-
},
|
| 1130 |
-
"interpreter": {
|
| 1131 |
-
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
| 1132 |
}
|
| 1133 |
},
|
| 1134 |
"nbformat": 4,
|
| 1135 |
"nbformat_minor": 5
|
| 1136 |
-
}
|
|
|
|
| 52 |
"## VQGAN-JAX model"
|
| 53 |
]
|
| 54 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
{
|
| 56 |
"cell_type": "code",
|
| 57 |
"execution_count": 93,
|
|
|
|
| 59 |
"metadata": {},
|
| 60 |
"outputs": [],
|
| 61 |
"source": [
|
| 62 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
| 63 |
]
|
| 64 |
},
|
| 65 |
{
|
|
|
|
| 1103 |
}
|
| 1104 |
],
|
| 1105 |
"metadata": {
|
| 1106 |
+
"interpreter": {
|
| 1107 |
+
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
| 1108 |
+
},
|
| 1109 |
"kernelspec": {
|
| 1110 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1111 |
+
"language": "python",
|
| 1112 |
+
"name": "python3"
|
| 1113 |
},
|
| 1114 |
"language_info": {
|
| 1115 |
"codemirror_mode": {
|
|
|
|
| 1121 |
"name": "python",
|
| 1122 |
"nbconvert_exporter": "python",
|
| 1123 |
"pygments_lexer": "ipython3",
|
| 1124 |
+
"version": "3.8.10"
|
|
|
|
|
|
|
|
|
|
| 1125 |
}
|
| 1126 |
},
|
| 1127 |
"nbformat": 4,
|
| 1128 |
"nbformat_minor": 5
|
| 1129 |
+
}
|
dev/predictions/wandb-examples.py
CHANGED
|
@@ -23,7 +23,7 @@ import torchvision.transforms as T
|
|
| 23 |
import torchvision.transforms.functional as TF
|
| 24 |
from torchvision.transforms import InterpolationMode
|
| 25 |
|
| 26 |
-
from
|
| 27 |
|
| 28 |
# TODO: set those args in a config file
|
| 29 |
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
|
|
|
| 23 |
import torchvision.transforms.functional as TF
|
| 24 |
from torchvision.transforms import InterpolationMode
|
| 25 |
|
| 26 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 27 |
|
| 28 |
# TODO: set those args in a config file
|
| 29 |
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
dev/requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Note: install with the following command:
|
| 2 |
+
# pip install -r requirements.txt -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
| 3 |
+
# Otherwise it won't find the appropriate libtpu_nightly
|
| 4 |
+
requests
|
| 5 |
+
jax[tpu]>=0.2.16
|
| 6 |
+
-e git+https://github.com/huggingface/transformers.git@master#egg=transformers
|
| 7 |
+
-e git+https://github.com/huggingface/datasets.git@master#egg=datasets
|
| 8 |
+
flax
|
| 9 |
+
jupyter
|
| 10 |
+
wandb
|
| 11 |
+
nltk
|
| 12 |
+
optax
|
| 13 |
+
git+https://github.com/patil-suraj/vqgan-jax.git@610d842dd33c739325a944102ed33acc07692dd5
|
| 14 |
+
|
| 15 |
+
# Inference
|
| 16 |
+
ftfy
|