Spaces:
Running
Running
feat(wandb-examples): use model file
Browse files
dev/predictions/wandb-examples.py
CHANGED
|
@@ -4,16 +4,14 @@
|
|
| 4 |
import random
|
| 5 |
|
| 6 |
import jax
|
| 7 |
-
import flax.linen as nn
|
| 8 |
from flax.training.common_utils import shard
|
| 9 |
from flax.jax_utils import replicate, unreplicate
|
| 10 |
|
| 11 |
from transformers.models.bart.modeling_flax_bart import *
|
| 12 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 13 |
|
| 14 |
-
import
|
| 15 |
|
| 16 |
-
import requests
|
| 17 |
from PIL import Image
|
| 18 |
import numpy as np
|
| 19 |
import matplotlib.pyplot as plt
|
|
@@ -23,58 +21,24 @@ import torchvision.transforms as T
|
|
| 23 |
import torchvision.transforms.functional as TF
|
| 24 |
from torchvision.transforms import InterpolationMode
|
| 25 |
|
|
|
|
| 26 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 31 |
-
BOS_TOKEN_ID = 16384
|
| 32 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
| 33 |
-
|
| 34 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
| 35 |
-
def setup(self):
|
| 36 |
-
# we keep shared to easily load pre-trained weights
|
| 37 |
-
self.shared = nn.Embed(
|
| 38 |
-
self.config.vocab_size,
|
| 39 |
-
self.config.d_model,
|
| 40 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 41 |
-
dtype=self.dtype,
|
| 42 |
-
)
|
| 43 |
-
# a separate embedding is used for the decoder
|
| 44 |
-
self.decoder_embed = nn.Embed(
|
| 45 |
-
OUTPUT_VOCAB_SIZE,
|
| 46 |
-
self.config.d_model,
|
| 47 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 48 |
-
dtype=self.dtype,
|
| 49 |
-
)
|
| 50 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
| 51 |
-
|
| 52 |
-
# the decoder has a different config
|
| 53 |
-
decoder_config = BartConfig(self.config.to_dict())
|
| 54 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
| 55 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
| 56 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
| 57 |
-
|
| 58 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
| 59 |
-
def setup(self):
|
| 60 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 61 |
-
self.lm_head = nn.Dense(
|
| 62 |
-
OUTPUT_VOCAB_SIZE,
|
| 63 |
-
use_bias=False,
|
| 64 |
-
dtype=self.dtype,
|
| 65 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 66 |
-
)
|
| 67 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
| 68 |
-
|
| 69 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 70 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
| 71 |
-
|
| 72 |
|
| 73 |
import wandb
|
| 74 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
os.environ["WANDB_SILENT"] = "true"
|
| 76 |
os.environ["WANDB_CONSOLE"] = "off"
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
# set id to None so our latest images don't get overwritten
|
| 79 |
id = None
|
| 80 |
run = wandb.init(id=id,
|
|
@@ -87,8 +51,10 @@ artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', ty
|
|
| 87 |
artifact_dir = artifact.download()
|
| 88 |
|
| 89 |
# create our model
|
| 90 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
| 91 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
|
|
|
|
|
|
|
|
|
| 92 |
model.config.force_bos_token_to_be_generated = False
|
| 93 |
model.config.forced_bos_token_id = None
|
| 94 |
model.config.forced_eos_token_id = None
|
|
@@ -143,9 +109,6 @@ p_get_images = jax.pmap(get_images, "batch")
|
|
| 143 |
bart_params = replicate(model.params)
|
| 144 |
vqgan_params = replicate(vqgan.params)
|
| 145 |
|
| 146 |
-
# ## CLIP Scoring
|
| 147 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
| 148 |
-
|
| 149 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 150 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 151 |
|
|
@@ -170,16 +133,12 @@ def hallucinate(prompt, num_images=64):
|
|
| 170 |
|
| 171 |
def clip_top_k(prompt, images, k=8):
|
| 172 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
|
|
|
| 173 |
outputs = clip(**inputs)
|
| 174 |
logits = outputs.logits_per_text
|
| 175 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
| 176 |
return [images[score] for score in scores]
|
| 177 |
|
| 178 |
-
|
| 179 |
-
# ## Log to wandb
|
| 180 |
-
|
| 181 |
-
from dalle_mini.helpers import captioned_strip
|
| 182 |
-
|
| 183 |
def log_to_wandb(prompts):
|
| 184 |
strips = []
|
| 185 |
for prompt in prompts:
|
|
|
|
| 4 |
import random
|
| 5 |
|
| 6 |
import jax
|
|
|
|
| 7 |
from flax.training.common_utils import shard
|
| 8 |
from flax.jax_utils import replicate, unreplicate
|
| 9 |
|
| 10 |
from transformers.models.bart.modeling_flax_bart import *
|
| 11 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 12 |
|
| 13 |
+
import os
|
| 14 |
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
import numpy as np
|
| 17 |
import matplotlib.pyplot as plt
|
|
|
|
| 21 |
import torchvision.transforms.functional as TF
|
| 22 |
from torchvision.transforms import InterpolationMode
|
| 23 |
|
| 24 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 25 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 26 |
|
| 27 |
+
# ## CLIP Scoring
|
| 28 |
+
from transformers import CLIPProcessor, FlaxCLIPModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
import wandb
|
| 31 |
import os
|
| 32 |
+
|
| 33 |
+
from dalle_mini.helpers import captioned_strip
|
| 34 |
+
|
| 35 |
+
|
| 36 |
os.environ["WANDB_SILENT"] = "true"
|
| 37 |
os.environ["WANDB_CONSOLE"] = "off"
|
| 38 |
|
| 39 |
+
# TODO: used for legacy support
|
| 40 |
+
BASE_MODEL = 'facebook/bart-large-cnn'
|
| 41 |
+
|
| 42 |
# set id to None so our latest images don't get overwritten
|
| 43 |
id = None
|
| 44 |
run = wandb.init(id=id,
|
|
|
|
| 51 |
artifact_dir = artifact.download()
|
| 52 |
|
| 53 |
# create our model
|
|
|
|
| 54 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
| 55 |
+
|
| 56 |
+
# TODO: legacy support (earlier models)
|
| 57 |
+
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
| 58 |
model.config.force_bos_token_to_be_generated = False
|
| 59 |
model.config.forced_bos_token_id = None
|
| 60 |
model.config.forced_eos_token_id = None
|
|
|
|
| 109 |
bart_params = replicate(model.params)
|
| 110 |
vqgan_params = replicate(vqgan.params)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
| 112 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 113 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 114 |
|
|
|
|
| 133 |
|
| 134 |
def clip_top_k(prompt, images, k=8):
|
| 135 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
| 136 |
+
# FIXME: image should be resized and normalized prior to being processed by CLIP
|
| 137 |
outputs = clip(**inputs)
|
| 138 |
logits = outputs.logits_per_text
|
| 139 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
| 140 |
return [images[score] for score in scores]
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
def log_to_wandb(prompts):
|
| 143 |
strips = []
|
| 144 |
for prompt in prompts:
|