Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +1710 -0
- female.jpg +3 -0
- requirements.txt +5 -0
- x-ray-chest.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
female.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,1710 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# General
|
| 5 |
+
import os
|
| 6 |
+
import kagglehub
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import json
|
| 9 |
+
from typing import Literal
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
import random
|
| 12 |
+
|
| 13 |
+
#Markdown
|
| 14 |
+
from IPython.display import Markdown, display, Image
|
| 15 |
+
|
| 16 |
+
# Image
|
| 17 |
+
from PIL import Image
|
| 18 |
+
|
| 19 |
+
# langchain for llms
|
| 20 |
+
from langchain_groq import ChatGroq
|
| 21 |
+
|
| 22 |
+
# Langchain
|
| 23 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate
|
| 24 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
| 25 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 26 |
+
from langchain_core.messages import HumanMessage
|
| 27 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 28 |
+
from langgraph.graph import END, START, StateGraph, MessagesState
|
| 29 |
+
from langgraph.prebuilt import ToolNode
|
| 30 |
+
from langchain_core.tools import tool
|
| 31 |
+
|
| 32 |
+
# Hugging Face
|
| 33 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
| 34 |
+
|
| 35 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Extra libraries
|
| 39 |
+
from pydantic import BaseModel, Field, model_validator
|
| 40 |
+
|
| 41 |
+
# Advanced RAG
|
| 42 |
+
from langchain_core.documents import Document
|
| 43 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 44 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 45 |
+
from langchain_community.vectorstores import Chroma
|
| 46 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 47 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 48 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# ## APIs
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
os.environ["SERPER_API_KEY"] = os.getenv("SERPER_API_KEY")
|
| 56 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 57 |
+
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
| 58 |
+
|
| 59 |
+
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
|
| 60 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# ## Setup LLM (Llama 3.3 via Groq)
|
| 64 |
+
|
| 65 |
+
# Note: Model 3.2 70b is not available on Groq any more
|
| 66 |
+
# We will be using 3.3 from Now on
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
| 71 |
+
|
| 72 |
+
#model_3_2 = 'llama-3.2-11b-text-preview' => his model has been removed from Groq platform
|
| 73 |
+
model_3_2_small = 'llama-3.1-8b-instant' # Smaller Model 3 Billion parameters if you need speed
|
| 74 |
+
model_3_3 ='llama-3.3-70b-versatile' # Very Large and Versatile Model with 70 Billion parameters
|
| 75 |
+
|
| 76 |
+
llm = ChatGroq(
|
| 77 |
+
model= model_3_3, #
|
| 78 |
+
temperature=0,
|
| 79 |
+
max_tokens=None,
|
| 80 |
+
timeout=None,
|
| 81 |
+
max_retries=2,
|
| 82 |
+
# groq_api_key=os.getenv("GROQ_API_KEY")
|
| 83 |
+
# other params...
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# A test message
|
| 87 |
+
# new text:
|
| 88 |
+
response = llm.invoke("hi, Please generate 10 unique Dutch names for both male and female?")
|
| 89 |
+
response
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
display(Markdown(response.content))
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# # First Agent: Chatbot Agent
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
from typing import Annotated
|
| 102 |
+
from typing_extensions import TypedDict
|
| 103 |
+
from langgraph.graph import StateGraph, START, END
|
| 104 |
+
from langgraph.graph.message import add_messages
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class ChatState(TypedDict):
|
| 108 |
+
# Messages have the type "list". The `add_messages` function
|
| 109 |
+
# in the annotation defines how this state key should be updated
|
| 110 |
+
# (in this case, it appends messages to the list, rather than overwriting them)
|
| 111 |
+
messages: Annotated[list, add_messages]
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
chat_graph = StateGraph(ChatState)
|
| 115 |
+
|
| 116 |
+
def chatbot_agent(state: ChatState):
|
| 117 |
+
return {"messages": [llm.invoke(state["messages"])]}
|
| 118 |
+
|
| 119 |
+
# The first argument is the unique node name
|
| 120 |
+
# The second argument is the function or object that will be called whenever
|
| 121 |
+
# the node is used.
|
| 122 |
+
chat_graph.add_node("chatbot_agent", chatbot_agent)
|
| 123 |
+
chat_graph.add_edge(START, "chatbot_agent")
|
| 124 |
+
chat_graph.add_edge("chatbot_agent", END)
|
| 125 |
+
|
| 126 |
+
# Finally, we'll want to be able to run our graph. To do so, call "compile()"
|
| 127 |
+
# We basically now give our AI Agent
|
| 128 |
+
graph_app = chat_graph.compile()
|
| 129 |
+
|
| 130 |
+
# Persistent state to maintain conversation history
|
| 131 |
+
persistent_state = {"messages": []} # Start with an empty message list
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
from IPython.display import Image, display
|
| 137 |
+
display(Image(graph_app.get_graph(xray=True).draw_mermaid_png()))
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
from typing import Annotated
|
| 143 |
+
from typing_extensions import TypedDict
|
| 144 |
+
from langgraph.graph import StateGraph, START, END
|
| 145 |
+
from langgraph.graph.message import add_messages
|
| 146 |
+
from IPython.display import display, Markdown
|
| 147 |
+
|
| 148 |
+
class ChatState(TypedDict):
|
| 149 |
+
messages: Annotated[list, add_messages]
|
| 150 |
+
|
| 151 |
+
chat_graph = StateGraph(ChatState)
|
| 152 |
+
|
| 153 |
+
def chatbot_agent(state: ChatState):
|
| 154 |
+
# Assuming `llm` is your language model that can handle the conversation history
|
| 155 |
+
return {"messages": [llm.invoke(state["messages"])]}
|
| 156 |
+
|
| 157 |
+
chat_graph.add_node("chatbot_agent", chatbot_agent)
|
| 158 |
+
chat_graph.add_edge(START, "chatbot_agent")
|
| 159 |
+
chat_graph.add_edge("chatbot_agent", END)
|
| 160 |
+
|
| 161 |
+
graph_app = chat_graph.compile()
|
| 162 |
+
|
| 163 |
+
# Persistent state to maintain conversation history
|
| 164 |
+
persistent_state = {"messages": []} # Start with an empty message list
|
| 165 |
+
|
| 166 |
+
def stream_graph_updates(user_input: str):
|
| 167 |
+
global persistent_state
|
| 168 |
+
# Append the user's message to the persistent state
|
| 169 |
+
persistent_state["messages"].append(("user", user_input))
|
| 170 |
+
|
| 171 |
+
is_finished = False
|
| 172 |
+
for event in graph_app.stream(persistent_state):
|
| 173 |
+
for value in event.values():
|
| 174 |
+
last_msg = value["messages"][-1]
|
| 175 |
+
display(Markdown("Assistant: " + last_msg.content))
|
| 176 |
+
|
| 177 |
+
# Append the assistant's response to the persistent state
|
| 178 |
+
persistent_state["messages"].append(("assistant", last_msg.content))
|
| 179 |
+
|
| 180 |
+
finish_reason = last_msg.response_metadata.get("finish_reason")
|
| 181 |
+
if finish_reason == "stop":
|
| 182 |
+
is_finished = True
|
| 183 |
+
break
|
| 184 |
+
if is_finished:
|
| 185 |
+
break
|
| 186 |
+
|
| 187 |
+
while True:
|
| 188 |
+
try:
|
| 189 |
+
user_input = input('User:')
|
| 190 |
+
if user_input.lower() in ["quit", "exit", "q"]:
|
| 191 |
+
print("Thank you and Goodbye!")
|
| 192 |
+
break
|
| 193 |
+
|
| 194 |
+
stream_graph_updates(user_input)
|
| 195 |
+
except Exception as e:
|
| 196 |
+
print(f"An error occurred: {e}")
|
| 197 |
+
break
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
# # Second Agent: Add Search to Chatbot to make it Stronger
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
from langchain_community.tools import GoogleSerperResults
|
| 208 |
+
from typing import List, Annotated
|
| 209 |
+
from langchain_core.messages import BaseMessage
|
| 210 |
+
from langgraph.prebuilt import ToolNode, create_react_agent
|
| 211 |
+
import operator
|
| 212 |
+
import functools
|
| 213 |
+
|
| 214 |
+
class ChatState(TypedDict):
|
| 215 |
+
# Messages have the type "list". The `add_messages` function
|
| 216 |
+
# in the annotation defines how this state key should be updated
|
| 217 |
+
# (in this case, it appends messages to the list, rather than overwriting them)
|
| 218 |
+
messages: Annotated[list, add_messages]
|
| 219 |
+
|
| 220 |
+
def agent_node(state, agent, name):
|
| 221 |
+
result = agent.invoke(state)
|
| 222 |
+
return {
|
| 223 |
+
"messages": [HumanMessage(content=result["messages"][-1].content, name=name)]
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class SearchState(TypedDict):
|
| 228 |
+
# A message is added after each team member finishes
|
| 229 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 230 |
+
|
| 231 |
+
# Search Tool
|
| 232 |
+
|
| 233 |
+
serper_tool = GoogleSerperResults(
|
| 234 |
+
num_results=5,
|
| 235 |
+
# how many Google results to return
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
search_agent = create_react_agent(llm, tools=[serper_tool])
|
| 239 |
+
search_node = functools.partial(agent_node,
|
| 240 |
+
agent=search_agent,
|
| 241 |
+
name="search_agent")
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# The first argument is the unique node name
|
| 245 |
+
# The second argument is the function or object that will be called whenever
|
| 246 |
+
# the node is used.
|
| 247 |
+
search_graph = StateGraph(SearchState)
|
| 248 |
+
search_graph.add_node("search_agent", search_node)
|
| 249 |
+
search_graph.add_edge(START, "search_agent")
|
| 250 |
+
search_graph.add_edge("search_agent", END)
|
| 251 |
+
|
| 252 |
+
# Finally, we'll want to be able to run our graph. To do so, call "compile()"
|
| 253 |
+
# We basically now give our AI Agent
|
| 254 |
+
search_app = search_graph.compile()
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
from IPython.display import Image, display
|
| 262 |
+
display(Image(search_app.get_graph(xray=True).draw_mermaid_png()))
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
from langchain_community.tools import GoogleSerperResults
|
| 268 |
+
from typing import List, Annotated
|
| 269 |
+
from langchain_core.messages import BaseMessage, HumanMessage
|
| 270 |
+
from langgraph.prebuilt import ToolNode, create_react_agent
|
| 271 |
+
from langgraph.graph import StateGraph, START, END
|
| 272 |
+
from langgraph.graph.message import add_messages
|
| 273 |
+
from IPython.display import display, Markdown
|
| 274 |
+
import operator
|
| 275 |
+
import functools
|
| 276 |
+
|
| 277 |
+
class ChatState(TypedDict):
|
| 278 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 279 |
+
|
| 280 |
+
def agent_node(state, agent, name):
|
| 281 |
+
result = agent.invoke(state)
|
| 282 |
+
return {
|
| 283 |
+
"messages": [HumanMessage(content=result["messages"][-1].content, name=name)]
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
class SearchState(TypedDict):
|
| 287 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 288 |
+
|
| 289 |
+
# Search Tool
|
| 290 |
+
serper_tool = GoogleSerperResults(num_results=5) # how many Google results to return
|
| 291 |
+
|
| 292 |
+
search_agent = create_react_agent(llm, tools=[serper_tool])
|
| 293 |
+
search_node = functools.partial(agent_node, agent=search_agent, name="search_agent")
|
| 294 |
+
|
| 295 |
+
# Create the search graph
|
| 296 |
+
search_graph = StateGraph(SearchState)
|
| 297 |
+
search_graph.add_node("search_agent", search_node)
|
| 298 |
+
search_graph.add_edge(START, "search_agent")
|
| 299 |
+
search_graph.add_edge("search_agent", END)
|
| 300 |
+
|
| 301 |
+
# Compile the search graph
|
| 302 |
+
search_app = search_graph.compile()
|
| 303 |
+
|
| 304 |
+
# Persistent state to maintain conversation history
|
| 305 |
+
persistent_state = {"messages": []} # Start with an empty message list
|
| 306 |
+
|
| 307 |
+
def stream_graph_updates(user_input: str):
|
| 308 |
+
global persistent_state
|
| 309 |
+
# Append the user's message to the persistent state
|
| 310 |
+
persistent_state["messages"].append(HumanMessage(content=user_input))
|
| 311 |
+
|
| 312 |
+
# Display "Searching the Web Now..." message
|
| 313 |
+
display(Markdown("**Assistant:** Searching the Web Now..."))
|
| 314 |
+
|
| 315 |
+
is_finished = False
|
| 316 |
+
for event in search_app.stream(persistent_state):
|
| 317 |
+
for value in event.values():
|
| 318 |
+
last_msg = value["messages"][-1]
|
| 319 |
+
display(Markdown("**Assistant:** " + last_msg.content))
|
| 320 |
+
|
| 321 |
+
# Append the assistant's response to the persistent state
|
| 322 |
+
persistent_state["messages"].append(last_msg)
|
| 323 |
+
|
| 324 |
+
finish_reason = last_msg.response_metadata.get("finish_reason")
|
| 325 |
+
if finish_reason == "stop":
|
| 326 |
+
is_finished = True
|
| 327 |
+
break
|
| 328 |
+
if is_finished:
|
| 329 |
+
break
|
| 330 |
+
|
| 331 |
+
while True:
|
| 332 |
+
try:
|
| 333 |
+
user_input = input('User:')
|
| 334 |
+
if user_input.lower() in ["quit", "exit", "q"]:
|
| 335 |
+
print("Thank you and Goodbye!")
|
| 336 |
+
break
|
| 337 |
+
|
| 338 |
+
stream_graph_updates(user_input)
|
| 339 |
+
except Exception as e:
|
| 340 |
+
print(f"An error occurred: {e}")
|
| 341 |
+
break
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
# # Step 1: Medical Database Preparation
|
| 345 |
+
# This step involves preparing and enhancing patient data to be used throughout the simulation.
|
| 346 |
+
|
| 347 |
+
# ## 1.1 Load Dataset
|
| 348 |
+
|
| 349 |
+
# ### 1.1.1 Disease Symptoms and Patient Profile Dataset
|
| 350 |
+
# Ensure you have downloaded it and placed it in your project directory.
|
| 351 |
+
# - https://www.kaggle.com/datasets/uom190346a/disease-symptoms-and-patient-profile-dataset
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# Download latest version
|
| 357 |
+
path = kagglehub.dataset_download("uom190346a/disease-symptoms-and-patient-profile-dataset")
|
| 358 |
+
print("Path to dataset files:", path)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
patient_df = pd.read_csv(path+'/Disease_symptom_and_patient_profile_dataset.csv')
|
| 364 |
+
patient_df.shape
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
patient_df.head()
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
# Calculate the counts of each gender
|
| 375 |
+
female_count = patient_df[patient_df['Gender'] == 'Female'].shape[0]
|
| 376 |
+
male_count = patient_df[patient_df['Gender'] == 'Male'].shape[0]
|
| 377 |
+
|
| 378 |
+
# Calculate the ratio
|
| 379 |
+
ratio = female_count / male_count
|
| 380 |
+
print(f"The ratio of Female to Male is {ratio}:1")
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
patient_df['Disease'].value_counts().head(20)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
# **prepare_medical_dataset Code in One Plalce**
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def prepare_medical_dataset(path, file_name):
|
| 394 |
+
patient_df = pd.read_csv(path+file_name)
|
| 395 |
+
return patient_df
|
| 396 |
+
|
| 397 |
+
path = kagglehub.dataset_download("uom190346a/disease-symptoms-and-patient-profile-dataset")
|
| 398 |
+
file_name = '/Disease_symptom_and_patient_profile_dataset.csv'
|
| 399 |
+
patient_df = prepare_medical_dataset(path, file_name)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# ### 1.1.2 Chest X-Ray Images (Pneumonia)
|
| 403 |
+
#
|
| 404 |
+
# - https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
|
| 405 |
+
# - https://huggingface.co/datasets/keremberke/chest-xray-classification
|
| 406 |
+
#
|
| 407 |
+
#
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
#from datasets import load_dataset
|
| 412 |
+
#patient_x_ray_path = "keremberke/chest-xray-classification"
|
| 413 |
+
#x_ray_ds = load_dataset(patient_x_ray_path, name="full")
|
| 414 |
+
from datasets import load_dataset
|
| 415 |
+
x_ray_ds = load_dataset("keremberke/chest-xray-classification", name="full")
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
|
| 420 |
+
patient_x_ray = random_row = x_ray_ds['train'][random_index]['image']
|
| 421 |
+
|
| 422 |
+
from datasets import load_dataset
|
| 423 |
+
x_ray_ds = load_dataset("keremberke/chest-xray-classification", name="full")
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
x_ray_ds['train'].shape[0]
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
# Assuming x_ray_ds['train'] is a dataset where we want to pick a random row
|
| 435 |
+
import random
|
| 436 |
+
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
patient_x_ray = x_ray_ds['train'][random_index]['image']
|
| 442 |
+
patient_x_ray
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
type(patient_x_ray)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
#!pip install --upgrade accelerate==0.31.0
|
| 453 |
+
#!pip install --upgrade huggingface-hub>=0.23.0
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
from transformers import pipeline
|
| 460 |
+
|
| 461 |
+
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
|
| 462 |
+
# vit-xray-pneumonia-classification
|
| 463 |
+
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
|
| 464 |
+
patient_x_ray_results = classifier(patient_x_ray)
|
| 465 |
+
patient_x_ray_results
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
# Find the label with the highest score
|
| 471 |
+
patient_x_ray_label = max(patient_x_ray_results, key=lambda x: x['score'])['label']
|
| 472 |
+
print(patient_x_ray_label)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
|
| 477 |
+
# vit-xray-pneumonia-classification
|
| 478 |
+
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
|
| 479 |
+
patient_x_ray_results = classifier(patient_x_ray)
|
| 480 |
+
|
| 481 |
+
# Find the label with the highest score and its score
|
| 482 |
+
highest = max(patient_x_ray_results, key=lambda x: x['score'])
|
| 483 |
+
highest_score_label = highest['label']
|
| 484 |
+
highest_score = highest['score'] * 100 # Convert to percentage
|
| 485 |
+
|
| 486 |
+
# Choose the correct verb based on the label
|
| 487 |
+
verb = "is" if highest_score_label == "NORMAL" else "has"
|
| 488 |
+
|
| 489 |
+
# Print the result dynamically
|
| 490 |
+
print(f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%")
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
# ## 1.2 Generate Synthetic Data with LLMs
|
| 494 |
+
# Generate culturally appropriate Dutch names and unique alphanumeric IDs for each patient.
|
| 495 |
+
|
| 496 |
+
# ### 1.2.1 Generate Random Names and IDs for Patience
|
| 497 |
+
|
| 498 |
+
# This Code Goes Slower because of Llama 3.3 70b being very big and slow LLM
|
| 499 |
+
# comparing to llama 3.2 11b
|
| 500 |
+
# Switch to model_3_2_smal when running this code
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
# === Step 1: Define Response Schemas ===
|
| 505 |
+
# Define the structure of the expected JSON output.
|
| 506 |
+
|
| 507 |
+
# ResponseSchema for First_Name
|
| 508 |
+
first_name_schema = ResponseSchema(
|
| 509 |
+
name="First_Name",
|
| 510 |
+
description="The first name of the patient."
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
# ResponseSchema for Last_Name
|
| 514 |
+
last_name_schema = ResponseSchema(
|
| 515 |
+
name="Last_Name",
|
| 516 |
+
description="The last name of the patient."
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# ResponseSchema for Patient_ID
|
| 520 |
+
patient_id_schema = ResponseSchema(
|
| 521 |
+
name="Patient_ID",
|
| 522 |
+
description="A unique 13-character alphanumeric patient identifier."
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
# ResponseSchema for Patient_ID
|
| 526 |
+
gender_schema = ResponseSchema(
|
| 527 |
+
name="G_Gender",
|
| 528 |
+
description="Indicate the first name you generate belong which Gender: Male or Female"
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
# Aggregate all response schemas
|
| 532 |
+
response_schemas = [
|
| 533 |
+
first_name_schema,
|
| 534 |
+
last_name_schema,
|
| 535 |
+
patient_id_schema,
|
| 536 |
+
gender_schema
|
| 537 |
+
]
|
| 538 |
+
|
| 539 |
+
# === Step 2: Set Up the Output Parser ===
|
| 540 |
+
# Initialize the StructuredOutputParser with the defined response schemas.
|
| 541 |
+
|
| 542 |
+
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
|
| 543 |
+
|
| 544 |
+
# Get the format instructions to include in the prompt
|
| 545 |
+
format_instructions = output_parser.get_format_instructions()
|
| 546 |
+
|
| 547 |
+
# === Step 3: Craft the Prompt ===
|
| 548 |
+
# Create a prompt that instructs the LLM to generate only the structured JSON data.
|
| 549 |
+
|
| 550 |
+
# Define the prompt template using ChatPromptTemplate
|
| 551 |
+
prompt_template = ChatPromptTemplate.from_template("""
|
| 552 |
+
you MUST Generate a list of {n} Dutch names along with a unique 13-character alphanumeric Patient_ID for each gender provided.
|
| 553 |
+
Always Use {genders} to generate a First_Name which belong to the right Gender, two category is possible: 'Male' or 'Female'.
|
| 554 |
+
Ensure the names are culturally appropriate for the Netherlands.
|
| 555 |
+
Generate unique names, no repetitions, and ensure diversity.
|
| 556 |
+
The ratio of Female to Male is {ratio}:1
|
| 557 |
+
|
| 558 |
+
{format_instructions}
|
| 559 |
+
|
| 560 |
+
Genders:
|
| 561 |
+
{genders}
|
| 562 |
+
|
| 563 |
+
**IMPORTANT:** Do not include any explanations, code, or additional text.
|
| 564 |
+
you MUST ALWAYS generate Dutch names and Patient_ID according {format_instructions}
|
| 565 |
+
and NEVER return empty values.
|
| 566 |
+
YOU MUST Provide only the JSON array as specified.
|
| 567 |
+
JSON array Should have exactly {n} rows and 3 columns
|
| 568 |
+
""")
|
| 569 |
+
|
| 570 |
+
# Determine the number of patients
|
| 571 |
+
n_patients = len(patient_df)
|
| 572 |
+
#n_patients = 120
|
| 573 |
+
# Calculate the counts of each gender
|
| 574 |
+
female_count = patient_df[patient_df['Gender'] == 'Female'].shape[0]
|
| 575 |
+
male_count = patient_df[patient_df['Gender'] == 'Male'].shape[0]
|
| 576 |
+
|
| 577 |
+
# Calculate the ratio
|
| 578 |
+
ratio = female_count / male_count
|
| 579 |
+
|
| 580 |
+
# Prepare the list of genders
|
| 581 |
+
genders = patient_df['Gender'].tolist()
|
| 582 |
+
|
| 583 |
+
# === Step 6: Generate the Prompt ===
|
| 584 |
+
# Format the prompt with the number of patients and their genders.
|
| 585 |
+
|
| 586 |
+
formatted_prompt = prompt_template.format(
|
| 587 |
+
n=n_patients,
|
| 588 |
+
ratio = ratio,
|
| 589 |
+
genders=', '.join(genders),
|
| 590 |
+
format_instructions=format_instructions
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
# Invoke the model with s Smaller Llama Model for Speed
|
| 594 |
+
model_3_2_small = 'llama-3.1-8b-instant' # if you need speed
|
| 595 |
+
|
| 596 |
+
llm = ChatGroq(
|
| 597 |
+
model= model_3_2_small, #
|
| 598 |
+
temperature=0,
|
| 599 |
+
max_tokens=None,
|
| 600 |
+
timeout=None,
|
| 601 |
+
max_retries=2
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
output = llm.invoke(formatted_prompt, timeout=1000)
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
display(Markdown(output.content))
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
output_parser = JsonOutputParser()
|
| 615 |
+
json_output = output_parser.invoke(output)
|
| 616 |
+
json_output
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
all_patients = []
|
| 623 |
+
generated_patients = pd.DataFrame(json_output)
|
| 624 |
+
generated_patients.head(5)
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
generated_patients.shape
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
# Adjusted LLM parameters (if supported)
|
| 636 |
+
llm.temperature = 0.9 # Increases randomness
|
| 637 |
+
|
| 638 |
+
all_patients_name_id = pd.DataFrame()
|
| 639 |
+
output_parser = JsonOutputParser()
|
| 640 |
+
|
| 641 |
+
while all_patients_name_id.shape[0] < n_patients:
|
| 642 |
+
output = llm.invoke(formatted_prompt)
|
| 643 |
+
json_output = output_parser.invoke(output)
|
| 644 |
+
generated_patients = pd.DataFrame(json_output)
|
| 645 |
+
all_patients_name_id = pd.concat([generated_patients, all_patients_name_id], axis = 0)
|
| 646 |
+
print(f"len all_patients_name_id: {len(all_patients_name_id)}")
|
| 647 |
+
all_patients_name_id = all_patients_name_id.drop_duplicates()
|
| 648 |
+
print(f"len all_patients_name_id after droping duplicates: {len(all_patients_name_id)}")
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
all_patients_name_id.rename(columns = {"G_Gender": "Gender"}, inplace= True)
|
| 655 |
+
all_patients_name_id.head(10)
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
gender_counts = patient_df['Gender'].value_counts()
|
| 662 |
+
gender_counts
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
all_patients_name_id['Gender'].value_counts()
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
# Step 1: Count the number of males and females in patient_df
|
| 674 |
+
gender_counts = patient_df['Gender'].value_counts()
|
| 675 |
+
|
| 676 |
+
# Step 2: Select the required number of unique males and females from all_patients_name_id
|
| 677 |
+
unique_males = all_patients_name_id[all_patients_name_id['Gender'] == 'Male'].drop_duplicates().head(gender_counts['Male'])
|
| 678 |
+
unique_females = all_patients_name_id[all_patients_name_id['Gender'] == 'Female'].drop_duplicates().head(gender_counts['Female'])
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
patient_male = patient_df[patient_df['Gender'] == 'Male'].reset_index(drop=True)
|
| 682 |
+
patient_female = patient_df[patient_df['Gender'] == 'Female'].reset_index(drop=True)
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
updated_male_patients = pd.concat([patient_male.reset_index(drop=True),
|
| 686 |
+
unique_males[0:patient_male.shape[0]].reset_index(drop=True)],
|
| 687 |
+
axis = 1)
|
| 688 |
+
|
| 689 |
+
updated_female_patients = pd.concat([patient_female.reset_index(drop=True),
|
| 690 |
+
unique_females[0:patient_female.shape[0]].reset_index(drop=True)],
|
| 691 |
+
axis = 1)
|
| 692 |
+
|
| 693 |
+
# Step 3: Concatenate patient_df with the selected rows from all_patients_name_id
|
| 694 |
+
updated_patient_df = pd.concat([updated_male_patients, updated_female_patients], axis = 0)
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
updated_patient_df.shape[0]
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
# Display the final concatenated dataframe
|
| 706 |
+
updated_patient_df
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
updated_patient_df = updated_patient_df.loc[:, ~updated_patient_df.columns.duplicated()]
|
| 713 |
+
updated_patient_df
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
updated_patient_df['Gender'].value_counts()
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
# #### 1.2.1.1 Select a Random Patient
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
# Pick a Random Patient: A female between 20 and 29 and with Pneumonia as Positive so that later we can check X-Ray Agent
|
| 727 |
+
mask = (updated_patient_df['Gender'] == 'Female') & \
|
| 728 |
+
(updated_patient_df["Age"].between(20, 29)) & \
|
| 729 |
+
(updated_patient_df['Difficulty Breathing'] == 'Yes') & \
|
| 730 |
+
(updated_patient_df['Outcome Variable'] == 'Positive')
|
| 731 |
+
selected_patients = updated_patient_df[mask].reset_index(drop=True)
|
| 732 |
+
selected_patients.head()
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
selected_patient = selected_patients.iloc[0]
|
| 739 |
+
selected_patient
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
# # Step 2: Create IDentity Photo for the Front Desk Agent
|
| 743 |
+
|
| 744 |
+
# ## 2.1 Build the Vision Model for Gender Classification (Image Classification Task)
|
| 745 |
+
|
| 746 |
+
# In[46]:
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
# Use a pipeline as a high-level helper
|
| 750 |
+
from transformers import pipeline
|
| 751 |
+
|
| 752 |
+
pipe = pipeline("image-classification", model="rizvandwiki/gender-classification")
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
# In[47]:
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
# Load model directly
|
| 759 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 760 |
+
|
| 761 |
+
processor = AutoImageProcessor.from_pretrained("rizvandwiki/gender-classification")
|
| 762 |
+
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
# In machine learning, particularly in classification tasks, logits are the raw, unnormalized outputs produced by a model's final layer before any activation function is applied. These outputs represent the model's confidence scores for each class and are essential for subsequent probability calculations.
|
| 766 |
+
|
| 767 |
+
# In[48]:
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
| 771 |
+
from PIL import Image
|
| 772 |
+
import requests
|
| 773 |
+
|
| 774 |
+
# Load the model and processor
|
| 775 |
+
model_name = "rizvandwiki/gender-classification"
|
| 776 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 777 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 778 |
+
|
| 779 |
+
# Load the image from URL or local path
|
| 780 |
+
image_url = "https://thispersondoesnotexist.com"
|
| 781 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 782 |
+
|
| 783 |
+
# Prepare the image for the model
|
| 784 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 785 |
+
|
| 786 |
+
# Perform inference
|
| 787 |
+
outputs = model(**inputs)
|
| 788 |
+
logits = outputs.logits
|
| 789 |
+
predicted_class = logits.argmax(-1).item()
|
| 790 |
+
|
| 791 |
+
# Map prediction to class label
|
| 792 |
+
classes = model.config.id2label
|
| 793 |
+
gender_label = classes[predicted_class]
|
| 794 |
+
|
| 795 |
+
print(f"Predicted Gender: {gender_label}")
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
import matplotlib.pyplot as plt
|
| 802 |
+
|
| 803 |
+
# Display the image and prediction
|
| 804 |
+
plt.imshow(image)
|
| 805 |
+
plt.axis('off') # Hide axes
|
| 806 |
+
plt.title(f"Predicted Gender: {gender_label}")
|
| 807 |
+
plt.show()
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
# ## 2.2 Build the Vision Model for Age Classification (Image Classification Task)
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
# Load age classification model
|
| 815 |
+
age_model_name = "nateraw/vit-age-classifier"
|
| 816 |
+
age_model = AutoModelForImageClassification.from_pretrained(age_model_name)
|
| 817 |
+
age_processor = AutoProcessor.from_pretrained(age_model_name)
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
# Age Prediction
|
| 824 |
+
age_inputs = age_processor(images=image, return_tensors="pt")
|
| 825 |
+
age_outputs = age_model(**age_inputs)
|
| 826 |
+
age_logits = age_outputs.logits
|
| 827 |
+
age_prediction = age_logits.argmax(-1).item()
|
| 828 |
+
age_label = age_model.config.id2label[age_prediction]
|
| 829 |
+
age_label
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
# Display the image with both predictions
|
| 835 |
+
plt.imshow(image)
|
| 836 |
+
plt.axis('off')
|
| 837 |
+
plt.title(f"Predicted Gender: {gender_label}, Predicted Age: {age_label}")
|
| 838 |
+
plt.show()
|
| 839 |
+
|
| 840 |
+
|
| 841 |
+
# # Step 3: Start Building Multi-Agents
|
| 842 |
+
#
|
| 843 |
+
# Define Each AI Agent
|
| 844 |
+
# We'll define agents for:
|
| 845 |
+
#
|
| 846 |
+
# * Administration Front Desk
|
| 847 |
+
# * Physician for General Health Examination + Blood Laboratory
|
| 848 |
+
# * X-Ray Image Department
|
| 849 |
+
|
| 850 |
+
# ## 3.1 Hospital Front Desk Agent
|
| 851 |
+
#
|
| 852 |
+
#
|
| 853 |
+
|
| 854 |
+
# **--IMPORTANT NOTE--** <br>
|
| 855 |
+
# 1. Don't forget to save one photo from https://thispersondoesnotexist.com/
|
| 856 |
+
# <br> as female.jpg and save it to this Path "/content/sample_data/'
|
| 857 |
+
# <br> which is standard path within your Google Colab
|
| 858 |
+
#
|
| 859 |
+
# ---
|
| 860 |
+
# 2. Don't Forget to Save one of the images from the x-ray-dataset <br>**Load Dataset in this way:** <br>
|
| 861 |
+
# patient_x_ray_path = "keremberke/chest-xray-classification" <br>
|
| 862 |
+
# x_ray_ds = load_dataset(patient_x_ray_path, name="full")
|
| 863 |
+
# <br> Then save one image labelled as x-ray-chest.jpg to the path "/content/sample_data/'
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
|
| 868 |
+
patient_x_ray_path = "keremberke/chest-xray-classification"
|
| 869 |
+
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
from typing import List, Tuple, Dict, Any, Sequence, Annotated, Literal
|
| 875 |
+
from typing_extensions import TypedDict
|
| 876 |
+
from langchain_core.messages import BaseMessage
|
| 877 |
+
import operator
|
| 878 |
+
import functools
|
| 879 |
+
from langchain_core.messages import HumanMessage
|
| 880 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 881 |
+
from langgraph.graph import END, START, StateGraph, MessagesState
|
| 882 |
+
from langgraph.prebuilt import ToolNode, create_react_agent
|
| 883 |
+
from langchain_core.tools import tool
|
| 884 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
| 885 |
+
from PIL import Image
|
| 886 |
+
from pydantic import BaseModel
|
| 887 |
+
|
| 888 |
+
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
|
| 889 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 890 |
+
|
| 891 |
+
# Annotated in python allows developers to declare the type of a reference and provide additional information related to it.
|
| 892 |
+
# Literal, after that the value are exact and literal
|
| 893 |
+
|
| 894 |
+
|
| 895 |
+
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
#----------------- Build Fucntions that Agents use ----------------------
|
| 899 |
+
|
| 900 |
+
def patient_verification_tool(image_Path, selected_patient_data, updated_patient_df) -> str:
|
| 901 |
+
"""Detects the gender from an image provided as a file path."""
|
| 902 |
+
from PIL import Image
|
| 903 |
+
print(image_Path)
|
| 904 |
+
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
|
| 905 |
+
processor = AutoProcessor.from_pretrained("rizvandwiki/gender-classification")
|
| 906 |
+
image = Image.open(image_Path)
|
| 907 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 908 |
+
outputs = model(**inputs)
|
| 909 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 910 |
+
print(f"Predicted Gender Of Patient is : {model.config.id2label[predicted_class]}")
|
| 911 |
+
predicted_gender = model.config.id2label[predicted_class]
|
| 912 |
+
|
| 913 |
+
from PIL import Image
|
| 914 |
+
model = AutoModelForImageClassification.from_pretrained("nateraw/vit-age-classifier")
|
| 915 |
+
processor = AutoProcessor.from_pretrained("nateraw/vit-age-classifier")
|
| 916 |
+
image = Image.open(image_Path)
|
| 917 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 918 |
+
outputs = model(**inputs)
|
| 919 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 920 |
+
print(f"predicted Age Class: {model.config.id2label[predicted_class]}")
|
| 921 |
+
predicted_age_range = model.config.id2label[predicted_class]
|
| 922 |
+
|
| 923 |
+
# Parse the age range string (e.g., "20-29")
|
| 924 |
+
age_min, age_max = map(int, predicted_age_range.split('-'))
|
| 925 |
+
print(f"age_mi: {age_min}, age_max: {age_max}")
|
| 926 |
+
|
| 927 |
+
# Verify against the DataFrame
|
| 928 |
+
matching_row = updated_patient_df[
|
| 929 |
+
(updated_patient_df["First_Name"] == selected_patient["First_Name"]) &
|
| 930 |
+
(updated_patient_df["Last_Name"] == selected_patient["Last_Name"]) &
|
| 931 |
+
(updated_patient_df["Patient_ID"] == selected_patient["Patient_ID"]) &
|
| 932 |
+
(updated_patient_df["Gender"].str.lower() == predicted_gender) &
|
| 933 |
+
(updated_patient_df["Age"].between(age_min, age_max))
|
| 934 |
+
]
|
| 935 |
+
print(f"matching_row {matching_row} ")
|
| 936 |
+
if not matching_row.empty:
|
| 937 |
+
patient_verification = f'''Verification successful.
|
| 938 |
+
Patient is : {selected_patient["First_Name"]} {selected_patient["Last_Name"]}
|
| 939 |
+
with ID {selected_patient["Patient_ID"]}
|
| 940 |
+
which is {predicted_gender} in age range of {predicted_age_range} can proceed to the physician.'''
|
| 941 |
+
else:
|
| 942 |
+
patient_verification = "ID not verified. Patient cannot proceed."
|
| 943 |
+
return patient_verification
|
| 944 |
+
|
| 945 |
+
#------------------- Define Agents-----------------------------
|
| 946 |
+
|
| 947 |
+
class AgentState(TypedDict):
|
| 948 |
+
initial_prompt : str
|
| 949 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 950 |
+
patient_verification : str
|
| 951 |
+
|
| 952 |
+
def front_desk_agent(state, image_Path, selected_patient_data, updated_patient_df):
|
| 953 |
+
initial_prompt = state["initial_prompt"]
|
| 954 |
+
# Call function
|
| 955 |
+
patient_verification = patient_verification_tool(image_Path, selected_patient_data, updated_patient_df)
|
| 956 |
+
print(patient_verification)
|
| 957 |
+
return {"patient_verification": patient_verification}
|
| 958 |
+
|
| 959 |
+
#-----------------------------------------------------------------
|
| 960 |
+
# Build the LangGraph for Hospital Front Desk #
|
| 961 |
+
#-----------------------------------------------------------------
|
| 962 |
+
|
| 963 |
+
image_Path = "female.jpg"
|
| 964 |
+
selected_patient_data = selected_patient.to_dict()
|
| 965 |
+
updated_patient_df
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
front_desk_agent_node = functools.partial(front_desk_agent,
|
| 969 |
+
image_Path = image_Path,
|
| 970 |
+
selected_patient_data=selected_patient_data,
|
| 971 |
+
updated_patient_df =updated_patient_df)
|
| 972 |
+
|
| 973 |
+
# 6. Set up the Langgraph state graph
|
| 974 |
+
FrontDeskGraph = StateGraph(AgentState)
|
| 975 |
+
|
| 976 |
+
# Define nodes for workflow
|
| 977 |
+
FrontDeskGraph.add_node("front_desk_agent", front_desk_agent_node)
|
| 978 |
+
FrontDeskGraph.add_edge(START, "front_desk_agent")
|
| 979 |
+
FrontDeskGraph.add_edge("front_desk_agent", END)
|
| 980 |
+
|
| 981 |
+
|
| 982 |
+
# Initialize memory to persist state between graph runs
|
| 983 |
+
FrontDeskWorkflow = FrontDeskGraph.compile()
|
| 984 |
+
|
| 985 |
+
from IPython.display import Markdown, display, Image
|
| 986 |
+
display(Image(FrontDeskWorkflow.get_graph(xray=True).draw_mermaid_png()))
|
| 987 |
+
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
initial_prompt = "You are Front Desk Administrator in an Hospital in the Netherlands. Start Verification of the following Patient:"
|
| 993 |
+
|
| 994 |
+
|
| 995 |
+
# Run the workflow
|
| 996 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 997 |
+
}
|
| 998 |
+
output = FrontDeskWorkflow.invoke(inputs)
|
| 999 |
+
output
|
| 1000 |
+
|
| 1001 |
+
|
| 1002 |
+
|
| 1003 |
+
|
| 1004 |
+
|
| 1005 |
+
display(Markdown(output['patient_verification']))
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
# ## 3.2 Pysician Agent
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
def question_patient_symptoms(selected_patient_data) -> str:
|
| 1014 |
+
"""Asks the patient about symptoms, generates responses, and summarizes the answers based on patient data."""
|
| 1015 |
+
symptoms_questions = {
|
| 1016 |
+
"Cough": "\nAre you coughing?\n",
|
| 1017 |
+
"Fatigue": "\nDo you feel fatigue?\n",
|
| 1018 |
+
"\nDifficulty Breathing": "Do you have difficulty breathing?\n"
|
| 1019 |
+
}
|
| 1020 |
+
|
| 1021 |
+
conversation = []
|
| 1022 |
+
|
| 1023 |
+
for symptom, question in symptoms_questions.items():
|
| 1024 |
+
conversation.append(f"\nPhysician: {question}")
|
| 1025 |
+
response = selected_patient_data.get(symptom, "No")
|
| 1026 |
+
answer = "Yes" if response == "Yes" else "No"
|
| 1027 |
+
conversation.append(f"\nPatient: {answer}")
|
| 1028 |
+
|
| 1029 |
+
first_name = selected_patient_data.get("First_Name", "")
|
| 1030 |
+
last_name = selected_patient_data.get("Last_Name", "")
|
| 1031 |
+
patient_id = selected_patient_data.get("Patient_ID", "")
|
| 1032 |
+
gender = selected_patient_data.get("Gender", "")
|
| 1033 |
+
age = selected_patient_data.get("Age", "")
|
| 1034 |
+
|
| 1035 |
+
profile = f"\nYou are {first_name} {last_name}, a {age} years old {gender} with Patient ID: {patient_id}."
|
| 1036 |
+
summary = profile +"I gathered that you are experiencing the following: "
|
| 1037 |
+
summaries = []
|
| 1038 |
+
for symptom in symptoms_questions.keys():
|
| 1039 |
+
response = selected_patient_data.get(symptom, "No")
|
| 1040 |
+
if response == "Yes":
|
| 1041 |
+
summaries.append(f"you are experiencing {symptom.lower()}")
|
| 1042 |
+
else:
|
| 1043 |
+
summaries.append(f"\nI am glad you are not experiencing {symptom.lower()}")
|
| 1044 |
+
summary += "; ".join(summaries) + "."
|
| 1045 |
+
|
| 1046 |
+
conversation.append(f"\nPhysician: {summary}")
|
| 1047 |
+
|
| 1048 |
+
return "\n".join(conversation)
|
| 1049 |
+
|
| 1050 |
+
def perform_examination(selected_patient_data) -> str:
|
| 1051 |
+
"""Performs examination by reporting fever, blood pressure, and cholesterol level from patient data."""
|
| 1052 |
+
fever = selected_patient_data.get("Fever", "Unknown")
|
| 1053 |
+
blood_pressure = selected_patient_data.get("Blood Pressure", "Unknown")
|
| 1054 |
+
cholesterol = selected_patient_data.get("Cholesterol Level", "Unknown")
|
| 1055 |
+
return f"Examination Results: Fever - {fever}, Blood Pressure - {blood_pressure}, Cholesterol Level - {cholesterol}"
|
| 1056 |
+
|
| 1057 |
+
def diagnose_patient(selected_patient_data) -> str:
|
| 1058 |
+
"""Provides diagnosis based on Disease and Outcome columns in patient data."""
|
| 1059 |
+
disease = selected_patient_data.get("Disease", "Unknown Disease")
|
| 1060 |
+
outcome = selected_patient_data.get("Outcome Variable", "Unknown Outcome")
|
| 1061 |
+
if outcome == 'Positive':
|
| 1062 |
+
diagnosis = 'Make X-Ray from Chest'
|
| 1063 |
+
else:
|
| 1064 |
+
diagnosis = 'Rest to Recover'
|
| 1065 |
+
return f"Diagnosis: {disease}. Test Result: {outcome}. Final Diagnosis: {diagnosis}", diagnosis
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
class AgentState(TypedDict):
|
| 1069 |
+
initial_prompt : str
|
| 1070 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 1071 |
+
question_patient_symptoms: str
|
| 1072 |
+
examination_patient: str
|
| 1073 |
+
diagnosis_patient: str
|
| 1074 |
+
diagnosis : str
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
def physician_agent(state, selected_patient_data):
|
| 1078 |
+
question_patient= question_patient_symptoms(selected_patient_data)
|
| 1079 |
+
examination = perform_examination(selected_patient_data)
|
| 1080 |
+
diagnosis_report, diagnosis = diagnose_patient(selected_patient_data)
|
| 1081 |
+
return {"question_patient_symptoms": question_patient,
|
| 1082 |
+
"examination_patient": examination,
|
| 1083 |
+
"diagnosis_patient": diagnosis_report,
|
| 1084 |
+
"diagnosis": diagnosis}
|
| 1085 |
+
|
| 1086 |
+
|
| 1087 |
+
selected_patient_data = selected_patient.to_dict()
|
| 1088 |
+
|
| 1089 |
+
physician_agent_node = functools.partial(physician_agent,
|
| 1090 |
+
selected_patient_data=selected_patient_data)
|
| 1091 |
+
|
| 1092 |
+
|
| 1093 |
+
# 6. Set up the Langgraph state graph
|
| 1094 |
+
PhysicianGraph = StateGraph(AgentState)
|
| 1095 |
+
|
| 1096 |
+
# Define nodes for workflow
|
| 1097 |
+
PhysicianGraph.add_node("physician_agent", physician_agent_node)
|
| 1098 |
+
PhysicianGraph.add_edge(START, "physician_agent")
|
| 1099 |
+
PhysicianGraph.add_edge("physician_agent", END)
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
# Initialize memory to persist state between graph runs
|
| 1103 |
+
PhysicianWorkflow = PhysicianGraph.compile()
|
| 1104 |
+
|
| 1105 |
+
display(Image(PhysicianWorkflow.get_graph(xray=True).draw_mermaid_png()))
|
| 1106 |
+
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
|
| 1111 |
+
initial_prompt = "You are a Very Experience Doctor in an Hospital in the Netherlands. Start a conversation with the patient and determine \
|
| 1112 |
+
symptoms and give diagnosis"
|
| 1113 |
+
|
| 1114 |
+
|
| 1115 |
+
# Run the workflow
|
| 1116 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1117 |
+
}
|
| 1118 |
+
output = PhysicianWorkflow.invoke(inputs)
|
| 1119 |
+
output
|
| 1120 |
+
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
display(Markdown(output['question_patient_symptoms']))
|
| 1126 |
+
display(Markdown(output['examination_patient']))
|
| 1127 |
+
display(Markdown(output['diagnosis_patient']))
|
| 1128 |
+
|
| 1129 |
+
|
| 1130 |
+
# ## 3.3 Radiologist
|
| 1131 |
+
|
| 1132 |
+
|
| 1133 |
+
|
| 1134 |
+
|
| 1135 |
+
def examine_X_ray_image(patient_x_ray_path) -> str:
|
| 1136 |
+
"""Use Vision Models to recognise if the X-Ray Image of Patient is NORMAL or PNEUMONIA"""
|
| 1137 |
+
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
|
| 1138 |
+
# vit-xray-pneumonia-classification
|
| 1139 |
+
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
|
| 1140 |
+
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
|
| 1141 |
+
patient_x_ray_image = x_ray_ds['train'][random_index]['image']
|
| 1142 |
+
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
|
| 1143 |
+
patient_x_ray_results = classifier(patient_x_ray_image)
|
| 1144 |
+
|
| 1145 |
+
# Find the label with the highest score and its score
|
| 1146 |
+
highest = max(patient_x_ray_results, key=lambda x: x['score'])
|
| 1147 |
+
highest_score_label = highest['label']
|
| 1148 |
+
highest_score = highest['score'] * 100 # Convert to percentage
|
| 1149 |
+
|
| 1150 |
+
# Choose the correct verb based on the label
|
| 1151 |
+
verb = "is" if highest_score_label == "NORMAL" else "has"
|
| 1152 |
+
|
| 1153 |
+
return f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%"
|
| 1154 |
+
|
| 1155 |
+
class AgentState(TypedDict):
|
| 1156 |
+
initial_prompt : str
|
| 1157 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 1158 |
+
pneumonia_detection: str
|
| 1159 |
+
|
| 1160 |
+
|
| 1161 |
+
|
| 1162 |
+
def radiologist_agent(state, patient_x_ray_path):
|
| 1163 |
+
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
|
| 1164 |
+
return {"pneumonia_detection": pneumonia_detection}
|
| 1165 |
+
|
| 1166 |
+
patient_x_ray_path = "keremberke/chest-xray-classification"
|
| 1167 |
+
|
| 1168 |
+
radiologist_agent_node = functools.partial(radiologist_agent,
|
| 1169 |
+
patient_x_ray_path=patient_x_ray_path)
|
| 1170 |
+
|
| 1171 |
+
# 6. Set up the Langgraph state graph
|
| 1172 |
+
RadiologistGraph = StateGraph(AgentState)
|
| 1173 |
+
|
| 1174 |
+
# Define nodes for workflow
|
| 1175 |
+
RadiologistGraph.add_node("radiologist_agent", radiologist_agent_node)
|
| 1176 |
+
RadiologistGraph.add_edge(START, "radiologist_agent")
|
| 1177 |
+
RadiologistGraph.add_edge("radiologist_agent", END)
|
| 1178 |
+
|
| 1179 |
+
# Initialize memory to persist state between graph runs
|
| 1180 |
+
RadiologistWorkflow = RadiologistGraph.compile()
|
| 1181 |
+
|
| 1182 |
+
display(Image(RadiologistWorkflow.get_graph(xray=True).draw_mermaid_png()))
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
|
| 1186 |
+
initial_prompt = "You are a Very Experienced Radiologist in an Hospital in the Netherlands. Diagnose if the patient has pneumonia"
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
# Run the workflow
|
| 1190 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1191 |
+
}
|
| 1192 |
+
output = RadiologistWorkflow.invoke(inputs)
|
| 1193 |
+
output
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
|
| 1197 |
+
display(Markdown(output['pneumonia_detection']))
|
| 1198 |
+
|
| 1199 |
+
|
| 1200 |
+
# # Step 4: Putting All Agents in One Graph
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
|
| 1205 |
+
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
|
| 1206 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 1207 |
+
|
| 1208 |
+
selected_patient_data = selected_patient.to_dict()
|
| 1209 |
+
image_Path = "female.jpg"
|
| 1210 |
+
patient_x_ray_image = patient_x_ray
|
| 1211 |
+
|
| 1212 |
+
def patient_verification_tool(image_Path, selected_patient_data, updated_patient_df) -> str:
|
| 1213 |
+
"""Detects the gender from an image provided as a file path."""
|
| 1214 |
+
from PIL import Image
|
| 1215 |
+
print(image_Path)
|
| 1216 |
+
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
|
| 1217 |
+
processor = AutoProcessor.from_pretrained("rizvandwiki/gender-classification")
|
| 1218 |
+
image = Image.open(image_Path)
|
| 1219 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 1220 |
+
outputs = model(**inputs)
|
| 1221 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 1222 |
+
print(f"Predicted Gender Of Patient is : {model.config.id2label[predicted_class]}")
|
| 1223 |
+
predicted_gender = model.config.id2label[predicted_class]
|
| 1224 |
+
|
| 1225 |
+
from PIL import Image
|
| 1226 |
+
model = AutoModelForImageClassification.from_pretrained("nateraw/vit-age-classifier")
|
| 1227 |
+
processor = AutoProcessor.from_pretrained("nateraw/vit-age-classifier")
|
| 1228 |
+
image = Image.open(image_Path)
|
| 1229 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 1230 |
+
outputs = model(**inputs)
|
| 1231 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 1232 |
+
print(f"predicted Age Class: {model.config.id2label[predicted_class]}")
|
| 1233 |
+
predicted_age_range = model.config.id2label[predicted_class]
|
| 1234 |
+
|
| 1235 |
+
# Parse the age range string (e.g., "20-29")
|
| 1236 |
+
age_min, age_max = map(int, predicted_age_range.split('-'))
|
| 1237 |
+
print(f"age_mi: {age_min}, age_max: {age_max}")
|
| 1238 |
+
|
| 1239 |
+
# Verify against the DataFrame
|
| 1240 |
+
matching_row = updated_patient_df[
|
| 1241 |
+
(updated_patient_df["First_Name"] == selected_patient["First_Name"]) &
|
| 1242 |
+
(updated_patient_df["Last_Name"] == selected_patient["Last_Name"]) &
|
| 1243 |
+
(updated_patient_df["Patient_ID"] == selected_patient["Patient_ID"]) &
|
| 1244 |
+
(updated_patient_df["Gender"].str.lower() == predicted_gender) &
|
| 1245 |
+
(updated_patient_df["Age"].between(age_min, age_max))
|
| 1246 |
+
]
|
| 1247 |
+
print(f"matching_row {matching_row} ")
|
| 1248 |
+
if not matching_row.empty:
|
| 1249 |
+
patient_verification = f'''Verification successful.
|
| 1250 |
+
Patient is : {selected_patient["First_Name"]} {selected_patient["Last_Name"]}
|
| 1251 |
+
with ID {selected_patient["Patient_ID"]}
|
| 1252 |
+
which is {predicted_gender} in age range of {predicted_age_range} can proceed to the physician.'''
|
| 1253 |
+
else:
|
| 1254 |
+
patient_verification = "ID not verified. Patient cannot proceed."
|
| 1255 |
+
return patient_verification
|
| 1256 |
+
|
| 1257 |
+
def question_patient_symptoms(selected_patient_data) -> str:
|
| 1258 |
+
"""Asks the patient about symptoms, generates responses, and summarizes the answers based on patient data."""
|
| 1259 |
+
symptoms_questions = {
|
| 1260 |
+
"Cough": "\nAre you coughing?\n",
|
| 1261 |
+
"Fatigue": "\nDo you feel fatigue?\n",
|
| 1262 |
+
"\nDifficulty Breathing": "Do you have difficulty breathing?\n"
|
| 1263 |
+
}
|
| 1264 |
+
|
| 1265 |
+
conversation = []
|
| 1266 |
+
|
| 1267 |
+
for symptom, question in symptoms_questions.items():
|
| 1268 |
+
conversation.append(f"\nPhysician: {question}")
|
| 1269 |
+
response = selected_patient_data.get(symptom, "No")
|
| 1270 |
+
answer = "Yes" if response == "Yes" else "No"
|
| 1271 |
+
conversation.append(f"\nPatient: {answer}")
|
| 1272 |
+
|
| 1273 |
+
first_name = selected_patient_data.get("First_Name", "")
|
| 1274 |
+
last_name = selected_patient_data.get("Last_Name", "")
|
| 1275 |
+
patient_id = selected_patient_data.get("Patient_ID", "")
|
| 1276 |
+
gender = selected_patient_data.get("Gender", "")
|
| 1277 |
+
age = selected_patient_data.get("Age", "")
|
| 1278 |
+
|
| 1279 |
+
profile = f"\nYou are {first_name} {last_name}, a {age} years old {gender} with Patient ID: {patient_id}."
|
| 1280 |
+
summary = profile +"I gathered that you are experiencing the following: "
|
| 1281 |
+
summaries = []
|
| 1282 |
+
for symptom in symptoms_questions.keys():
|
| 1283 |
+
response = selected_patient_data.get(symptom, "No")
|
| 1284 |
+
if response == "Yes":
|
| 1285 |
+
summaries.append(f"you are experiencing {symptom.lower()}")
|
| 1286 |
+
else:
|
| 1287 |
+
summaries.append(f"\nI am glad you are not experiencing {symptom.lower()}")
|
| 1288 |
+
summary += "; ".join(summaries) + "."
|
| 1289 |
+
|
| 1290 |
+
conversation.append(f"\nPhysician: {summary}")
|
| 1291 |
+
|
| 1292 |
+
return "\n".join(conversation)
|
| 1293 |
+
|
| 1294 |
+
def perform_examination(selected_patient_data) -> str:
|
| 1295 |
+
"""Performs examination by reporting fever, blood pressure, and cholesterol level from patient data."""
|
| 1296 |
+
fever = selected_patient_data.get("Fever", "Unknown")
|
| 1297 |
+
blood_pressure = selected_patient_data.get("Blood Pressure", "Unknown")
|
| 1298 |
+
cholesterol = selected_patient_data.get("Cholesterol Level", "Unknown")
|
| 1299 |
+
return f"Examination Results: Fever - {fever}, Blood Pressure - {blood_pressure}, Cholesterol Level - {cholesterol}"
|
| 1300 |
+
|
| 1301 |
+
def diagnose_patient(selected_patient_data) -> str:
|
| 1302 |
+
"""Provides diagnosis based on Disease and Outcome columns in patient data."""
|
| 1303 |
+
disease = selected_patient_data.get("Disease", "Unknown Disease")
|
| 1304 |
+
outcome = selected_patient_data.get("Outcome Variable", "Unknown Outcome")
|
| 1305 |
+
if outcome == 'Positive':
|
| 1306 |
+
diagnosis = 'Make X-Ray from Chest'
|
| 1307 |
+
else:
|
| 1308 |
+
diagnosis = 'Rest to Recover'
|
| 1309 |
+
return f"Diagnosis: {disease}. Test Result: {outcome}. Final Diagnosis: {diagnosis}", diagnosis
|
| 1310 |
+
|
| 1311 |
+
def examine_X_ray_image(patient_x_ray_path) -> str:
|
| 1312 |
+
"""Use Vision Models to recognise if the X-Ray Image of Patient is NORMAL or PNEUMONIA"""
|
| 1313 |
+
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
|
| 1314 |
+
# vit-xray-pneumonia-classification
|
| 1315 |
+
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
|
| 1316 |
+
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
|
| 1317 |
+
patient_x_ray_image = x_ray_ds['train'][random_index]['image']
|
| 1318 |
+
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
|
| 1319 |
+
patient_x_ray_results = classifier(patient_x_ray_image)
|
| 1320 |
+
|
| 1321 |
+
# Find the label with the highest score and its score
|
| 1322 |
+
highest = max(patient_x_ray_results, key=lambda x: x['score'])
|
| 1323 |
+
highest_score_label = highest['label']
|
| 1324 |
+
highest_score = highest['score'] * 100 # Convert to percentage
|
| 1325 |
+
|
| 1326 |
+
# Choose the correct verb based on the label
|
| 1327 |
+
verb = "is" if highest_score_label == "NORMAL" else "has"
|
| 1328 |
+
|
| 1329 |
+
return f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%"
|
| 1330 |
+
|
| 1331 |
+
# The agent state is the input to each node in the graph
|
| 1332 |
+
class AgentState(TypedDict):
|
| 1333 |
+
# The annotation tells the graph that new messages will always
|
| 1334 |
+
# be added to the current states
|
| 1335 |
+
initial_prompt : str
|
| 1336 |
+
messages: Annotated[List[BaseMessage], operator.add]
|
| 1337 |
+
patient_verification : str
|
| 1338 |
+
question_patient_symptoms: str
|
| 1339 |
+
examination_patient: str
|
| 1340 |
+
diagnosis_patient: str
|
| 1341 |
+
diagnosis : str
|
| 1342 |
+
pneumonia_detection: str
|
| 1343 |
+
|
| 1344 |
+
def front_desk_agent(state, image_Path, selected_patient_data, updated_patient_df):
|
| 1345 |
+
initial_prompt = state["initial_prompt"]
|
| 1346 |
+
patient_verification = patient_verification_tool(image_Path, selected_patient_data, updated_patient_df)
|
| 1347 |
+
print(patient_verification)
|
| 1348 |
+
return {"patient_verification": patient_verification}
|
| 1349 |
+
|
| 1350 |
+
def physician_agent(state, selected_patient_data):
|
| 1351 |
+
question_patient= question_patient_symptoms(selected_patient_data)
|
| 1352 |
+
examination = perform_examination(selected_patient_data)
|
| 1353 |
+
diagnosis_report, diagnosis = diagnose_patient(selected_patient_data)
|
| 1354 |
+
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
|
| 1355 |
+
return {"question_patient_symptoms": question_patient,
|
| 1356 |
+
"examination_patient": examination,
|
| 1357 |
+
"diagnosis_patient": diagnosis_report,
|
| 1358 |
+
"diagnosis": diagnosis}
|
| 1359 |
+
|
| 1360 |
+
def radiologist_agent(state, patient_x_ray_path):
|
| 1361 |
+
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
|
| 1362 |
+
return {"pneumonia_detection": pneumonia_detection}
|
| 1363 |
+
|
| 1364 |
+
def decide_on_radiologist(state):
|
| 1365 |
+
if state["diagnosis"] == 'Make X-Ray from Chest':
|
| 1366 |
+
return 'radiologist'
|
| 1367 |
+
else:
|
| 1368 |
+
return ''
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
image_Path = "female.jpg"
|
| 1372 |
+
selected_patient_data = selected_patient.to_dict()
|
| 1373 |
+
updated_patient_df
|
| 1374 |
+
patient_x_ray_path = "keremberke/chest-xray-classification"
|
| 1375 |
+
|
| 1376 |
+
front_desk_agent_node = functools.partial(front_desk_agent,
|
| 1377 |
+
image_Path = image_Path,
|
| 1378 |
+
selected_patient_data=selected_patient_data,
|
| 1379 |
+
updated_patient_df =updated_patient_df)
|
| 1380 |
+
physician_agent_node = functools.partial(physician_agent,
|
| 1381 |
+
selected_patient_data=selected_patient_data)
|
| 1382 |
+
|
| 1383 |
+
radiologist_agent_node = functools.partial(radiologist_agent,
|
| 1384 |
+
patient_x_ray_path=patient_x_ray_path)
|
| 1385 |
+
|
| 1386 |
+
def decide_on_radiologist(state):
|
| 1387 |
+
if state["diagnosis"] == 'Make X-Ray from Chest':
|
| 1388 |
+
return 'radiologist'
|
| 1389 |
+
else:
|
| 1390 |
+
return 'end'
|
| 1391 |
+
|
| 1392 |
+
# 6. Set up the Langgraph state graph
|
| 1393 |
+
HospitalGraph = StateGraph(AgentState)
|
| 1394 |
+
|
| 1395 |
+
# Define nodes for workflow
|
| 1396 |
+
HospitalGraph.add_node("front_desk_agent", front_desk_agent_node)
|
| 1397 |
+
HospitalGraph.add_node("physician_agent", physician_agent_node)
|
| 1398 |
+
HospitalGraph.add_node("radiologist_agent", radiologist_agent_node)
|
| 1399 |
+
|
| 1400 |
+
HospitalGraph.add_edge(START, "front_desk_agent")
|
| 1401 |
+
HospitalGraph.add_edge("front_desk_agent", "physician_agent")
|
| 1402 |
+
HospitalGraph.add_conditional_edges("physician_agent",
|
| 1403 |
+
decide_on_radiologist,
|
| 1404 |
+
{'radiologist': "radiologist_agent",
|
| 1405 |
+
'end': END})
|
| 1406 |
+
|
| 1407 |
+
|
| 1408 |
+
# Initialize memory to persist state between graph runs
|
| 1409 |
+
HospitalWorkflow = HospitalGraph.compile()
|
| 1410 |
+
|
| 1411 |
+
display(Image(HospitalWorkflow.get_graph(xray=True).draw_mermaid_png()))
|
| 1412 |
+
|
| 1413 |
+
|
| 1414 |
+
|
| 1415 |
+
|
| 1416 |
+
|
| 1417 |
+
initial_prompt = "Start with the following Patient"
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
# Run the workflow
|
| 1421 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1422 |
+
}
|
| 1423 |
+
output = HospitalWorkflow.invoke(inputs)
|
| 1424 |
+
output
|
| 1425 |
+
|
| 1426 |
+
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
display(Markdown(output['patient_verification']))
|
| 1430 |
+
|
| 1431 |
+
|
| 1432 |
+
|
| 1433 |
+
|
| 1434 |
+
|
| 1435 |
+
display(Markdown(output['question_patient_symptoms']))
|
| 1436 |
+
display(Markdown(output['examination_patient']))
|
| 1437 |
+
display(Markdown(output['diagnosis_patient']))
|
| 1438 |
+
|
| 1439 |
+
|
| 1440 |
+
|
| 1441 |
+
|
| 1442 |
+
display(Markdown(output['pneumonia_detection']))
|
| 1443 |
+
|
| 1444 |
+
|
| 1445 |
+
# # Step 5: Gradio Dashboard
|
| 1446 |
+
|
| 1447 |
+
# ## 5.1 Build the Hospital Dashboard APP
|
| 1448 |
+
|
| 1449 |
+
# In[69]:
|
| 1450 |
+
|
| 1451 |
+
|
| 1452 |
+
x_ray_image_path = 'x-ray-chest.png'
|
| 1453 |
+
|
| 1454 |
+
import gradio as gr
|
| 1455 |
+
info = (
|
| 1456 |
+
f"**First Name:** {selected_patient_data['First_Name']}\n\n"
|
| 1457 |
+
f"**Last Name:** {selected_patient_data['Last_Name']}\n\n"
|
| 1458 |
+
f"**Patient ID:** {selected_patient_data['Patient_ID']}"
|
| 1459 |
+
)
|
| 1460 |
+
|
| 1461 |
+
def verify_age_gender():
|
| 1462 |
+
"""
|
| 1463 |
+
Function to verify age and gender.
|
| 1464 |
+
"""
|
| 1465 |
+
# Placeholder logic: In a real scenario, perform necessary checks or computations
|
| 1466 |
+
initial_prompt = "You are Front Desk Administrator in an Hospital in the Netherlands. Start Verification of the following Patient:"
|
| 1467 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1468 |
+
}
|
| 1469 |
+
output = FrontDeskWorkflow.invoke(inputs)
|
| 1470 |
+
verification_message = '✅ ' + output['patient_verification']
|
| 1471 |
+
return verification_message, gr.update(visible=True)
|
| 1472 |
+
|
| 1473 |
+
def physician_examination():
|
| 1474 |
+
initial_prompt = "You are a Very Experience Doctor in an Hospital in the Netherlands. Start a conversation with the patient and determine \
|
| 1475 |
+
symptoms and give diagnosis"
|
| 1476 |
+
# Run the workflow
|
| 1477 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1478 |
+
}
|
| 1479 |
+
output = PhysicianWorkflow.invoke(inputs)
|
| 1480 |
+
output_all = f''' 🩺 {output['question_patient_symptoms']}\n
|
| 1481 |
+
💓 {output['examination_patient']}\n
|
| 1482 |
+
🌬️ {output['diagnosis_patient']}'''
|
| 1483 |
+
return output_all, gr.update(visible=True)
|
| 1484 |
+
|
| 1485 |
+
def pneumonia_detection():
|
| 1486 |
+
initial_prompt = "You are a Very Experienced Radiologist in an Hospital in the Netherlands. Diagnose if the patient has pneumonia"
|
| 1487 |
+
inputs = {"initial_prompt" : initial_prompt
|
| 1488 |
+
}
|
| 1489 |
+
output = RadiologistWorkflow.invoke(inputs)
|
| 1490 |
+
pneumonia_detection = 'From X-Ray Image 🖼️ ' + output['pneumonia_detection']
|
| 1491 |
+
return pneumonia_detection
|
| 1492 |
+
|
| 1493 |
+
def take_xray_image():
|
| 1494 |
+
|
| 1495 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 1496 |
+
|
| 1497 |
+
with gr.Blocks() as demo:
|
| 1498 |
+
with gr.Row():
|
| 1499 |
+
with gr.Column(scale=1):
|
| 1500 |
+
gr.Markdown(info)
|
| 1501 |
+
# Add a Button below the Markdown
|
| 1502 |
+
verify_button = gr.Button("Verify Age and Gender")
|
| 1503 |
+
# Add an output component to display verification status
|
| 1504 |
+
verification_output = gr.Textbox(label="Verification Status", interactive=False)
|
| 1505 |
+
# Add a Button below the Markdown
|
| 1506 |
+
physician_button = gr.Button("Get Examination at Physician", visible=False)
|
| 1507 |
+
physician_output = gr.Textbox(label="Examination by Physician Placeholder", interactive=False)
|
| 1508 |
+
x_ray_button = gr.Button("Take Chest X-Ray Image", visible=False)
|
| 1509 |
+
# Display X-Ray Image (Initially Hidden)
|
| 1510 |
+
xray_image_display = gr.Image(value=x_ray_image_path, label="X-Ray Image", visible=False)
|
| 1511 |
+
radiologist_button = gr.Button("Go to Radiologist", visible=False)
|
| 1512 |
+
# Add an output component to display verification status
|
| 1513 |
+
radiologist_output = gr.Textbox(label="Radiologist Placeholder", interactive=False)
|
| 1514 |
+
|
| 1515 |
+
with gr.Column(scale=1):
|
| 1516 |
+
gr.Image(value=image_Path, label="Static Image", show_label=True)
|
| 1517 |
+
|
| 1518 |
+
# Define the button's action: When clicked, call verify_age_gender and display the result
|
| 1519 |
+
verify_button.click(fn=verify_age_gender, inputs=None, outputs=[verification_output, physician_button])
|
| 1520 |
+
physician_button.click(fn=physician_examination, inputs=None, outputs=[physician_output, x_ray_button])
|
| 1521 |
+
x_ray_button.click(fn=take_xray_image, inputs=None, outputs=[xray_image_display, radiologist_button])
|
| 1522 |
+
radiologist_button.click(fn=pneumonia_detection, inputs=None, outputs=[radiologist_output])
|
| 1523 |
+
|
| 1524 |
+
|
| 1525 |
+
# ## 5.2 Run the App
|
| 1526 |
+
|
| 1527 |
+
|
| 1528 |
+
|
| 1529 |
+
# Launch the app
|
| 1530 |
+
demo.launch()
|
| 1531 |
+
|
| 1532 |
+
|
| 1533 |
+
# # Step 6: Building Advanced Retrieval (RAG)
|
| 1534 |
+
|
| 1535 |
+
# ## 6.1 Textsplitter
|
| 1536 |
+
|
| 1537 |
+
|
| 1538 |
+
|
| 1539 |
+
|
| 1540 |
+
# Patient records (3 example patients)
|
| 1541 |
+
|
| 1542 |
+
text_content = ["Patient 1: Mette Smit, a 25 years old Female with Patient ID: X8g6eC2R7uPvN5a1."
|
| 1543 |
+
"Mette is coughing and is experiencing fatigue. Mette has fever and Influenza."
|
| 1544 |
+
"Mette has Pneuomnia with Probability of ca. 92%."
|
| 1545 |
+
"Patient 2: Tim Sutherland has fever and suffer from difficuly in breathing.",
|
| 1546 |
+
"We made an X-Ray Image from Tim Sutherland chest.",
|
| 1547 |
+
"Radiologist give Tim Sutherland 93% chance of Pneuomnia",
|
| 1548 |
+
"Patient 3: Jane Bright has no fever and suffer from high blood pressure and high chlostole.",
|
| 1549 |
+
"We made an X-Ray Image from Jane Bright chest because of non-stop caughing",
|
| 1550 |
+
"Radiologist give only 8% chance of Pneuomnia for Jane. It seems that Jane Bright has an influenza",]
|
| 1551 |
+
|
| 1552 |
+
documents = [Document(page_content=text) for text in text_content]
|
| 1553 |
+
|
| 1554 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20)
|
| 1555 |
+
splits = text_splitter.split_documents(documents)
|
| 1556 |
+
splits
|
| 1557 |
+
|
| 1558 |
+
|
| 1559 |
+
|
| 1560 |
+
|
| 1561 |
+
text_chunks = []
|
| 1562 |
+
for page in splits:
|
| 1563 |
+
chunks = text_splitter.split_text(page.page_content)
|
| 1564 |
+
text_chunks.extend(chunks)
|
| 1565 |
+
text_chunks
|
| 1566 |
+
|
| 1567 |
+
|
| 1568 |
+
# ## 6.2 Embedding
|
| 1569 |
+
|
| 1570 |
+
|
| 1571 |
+
#!pip install -U sentence-transformers langchain-huggingface accelerate
|
| 1572 |
+
#!pip install "transformers==4.41.1"
|
| 1573 |
+
#!pip install "peft==0.13.2"
|
| 1574 |
+
#from langchain_huggingface import HuggingFaceEmbeddings
|
| 1575 |
+
|
| 1576 |
+
hf_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 1577 |
+
embeddings = hf_embeddings.embed_documents(text_chunks)
|
| 1578 |
+
|
| 1579 |
+
|
| 1580 |
+
# ## 6.3 Vector Database
|
| 1581 |
+
|
| 1582 |
+
|
| 1583 |
+
|
| 1584 |
+
|
| 1585 |
+
## persist_directory = '/content/drive/MyDrive/chromadb'
|
| 1586 |
+
|
| 1587 |
+
## vectordb = Chroma.from_documents(documents=splits,
|
| 1588 |
+
## embedding=hf_embeddings,
|
| 1589 |
+
## persist_directory=persist_directory)
|
| 1590 |
+
|
| 1591 |
+
|
| 1592 |
+
# ## 6.4 LLM | Groq + Llama 3.3
|
| 1593 |
+
|
| 1594 |
+
|
| 1595 |
+
|
| 1596 |
+
|
| 1597 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
| 1598 |
+
|
| 1599 |
+
# Model 3.2 is removed from Groq platform
|
| 1600 |
+
# So we use the Newest one: 3.3
|
| 1601 |
+
|
| 1602 |
+
model_3_3 ='llama-3.3-70b-versatile'
|
| 1603 |
+
|
| 1604 |
+
llm = ChatGroq(
|
| 1605 |
+
model=model_3_3,
|
| 1606 |
+
temperature=0,
|
| 1607 |
+
max_tokens=None,
|
| 1608 |
+
timeout=None,
|
| 1609 |
+
max_retries=2,
|
| 1610 |
+
# other params...
|
| 1611 |
+
)
|
| 1612 |
+
|
| 1613 |
+
|
| 1614 |
+
# ## 6.5 Query Prompt
|
| 1615 |
+
|
| 1616 |
+
# In[76]:
|
| 1617 |
+
|
| 1618 |
+
|
| 1619 |
+
QUERY_PROMPT = PromptTemplate(
|
| 1620 |
+
input_variables=["question"],
|
| 1621 |
+
template="""You are an AI language model assistant. Your task is to generate five
|
| 1622 |
+
different versions of the given user question to retrieve relevant documents from
|
| 1623 |
+
a vector database. By generating multiple perspectives on the user question, your
|
| 1624 |
+
goal is to help the user overcome some of the limitations of the distance-based
|
| 1625 |
+
similarity search. Provide these alternative questions separated by newlines.
|
| 1626 |
+
Original question: {question}""",
|
| 1627 |
+
)
|
| 1628 |
+
|
| 1629 |
+
|
| 1630 |
+
# ## 6.6 Retriever
|
| 1631 |
+
|
| 1632 |
+
|
| 1633 |
+
|
| 1634 |
+
overall_retriever = MultiQueryRetriever.from_llm(
|
| 1635 |
+
vectordb.as_retriever(),
|
| 1636 |
+
llm,
|
| 1637 |
+
prompt=QUERY_PROMPT
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
# RAG prompt
|
| 1641 |
+
template = """Answer the question based ONLY on the following context:
|
| 1642 |
+
{context}
|
| 1643 |
+
Question: {question}
|
| 1644 |
+
"""
|
| 1645 |
+
|
| 1646 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 1647 |
+
|
| 1648 |
+
|
| 1649 |
+
# ## 6.7 Chain
|
| 1650 |
+
|
| 1651 |
+
|
| 1652 |
+
|
| 1653 |
+
|
| 1654 |
+
chain = (
|
| 1655 |
+
{"context": overall_retriever, "question": RunnablePassthrough()}
|
| 1656 |
+
| prompt
|
| 1657 |
+
| llm
|
| 1658 |
+
| StrOutputParser()
|
| 1659 |
+
)
|
| 1660 |
+
|
| 1661 |
+
|
| 1662 |
+
# # Step 7: Chatting with RAG
|
| 1663 |
+
|
| 1664 |
+
|
| 1665 |
+
|
| 1666 |
+
|
| 1667 |
+
questions = '''What are the names of all the patients in the database?'''
|
| 1668 |
+
display(Markdown(chain.invoke(questions)))
|
| 1669 |
+
|
| 1670 |
+
|
| 1671 |
+
|
| 1672 |
+
|
| 1673 |
+
|
| 1674 |
+
questions = '''What are all the health issues that Jane Bright has?'''
|
| 1675 |
+
display(Markdown(chain.invoke(questions)))
|
| 1676 |
+
|
| 1677 |
+
|
| 1678 |
+
|
| 1679 |
+
|
| 1680 |
+
|
| 1681 |
+
questions = '''What are all the health issues that Mette Smit has?'''
|
| 1682 |
+
display(Markdown(chain.invoke(questions)))
|
| 1683 |
+
|
| 1684 |
+
|
| 1685 |
+
|
| 1686 |
+
|
| 1687 |
+
|
| 1688 |
+
questions = '''What is the age of Tim Sutherland?'''
|
| 1689 |
+
display(Markdown(chain.invoke(questions)))
|
| 1690 |
+
|
| 1691 |
+
|
| 1692 |
+
|
| 1693 |
+
|
| 1694 |
+
questions = '''Which patient has a Patient ID?'''
|
| 1695 |
+
display(Markdown(chain.invoke(questions)))
|
| 1696 |
+
|
| 1697 |
+
|
| 1698 |
+
|
| 1699 |
+
hf_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 1700 |
+
embeddings = hf_embeddings.embed_documents(text_chunks)
|
| 1701 |
+
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
|
| 1705 |
+
## persist_directory = '/content/drive/MyDrive/chromadb'
|
| 1706 |
+
|
| 1707 |
+
## vectordb = Chroma.from_documents(documents=splits,
|
| 1708 |
+
## embedding=hf_embeddings,
|
| 1709 |
+
## persist_directory=persist_directory)
|
| 1710 |
+
|
female.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
textwrap3
|
| 2 |
+
crewai
|
| 3 |
+
crewai-tools
|
| 4 |
+
gradio
|
| 5 |
+
python-dotenv
|
x-ray-chest.png
ADDED
|