Spaces:
Sleeping
Sleeping
| import PIL.Image | |
| import gradio as gr | |
| import base64 | |
| import time | |
| import os | |
| import google.generativeai as genai | |
| import pathlib | |
| txt_model = genai.GenerativeModel('gemini-pro') | |
| vis_model = genai.GenerativeModel('gemini-pro-vision') | |
| txt_prompt_1 = 'I have upload the image. The image contains two sample images, A images contains 4 objects--Lens, Aducam Board, Anti-Static Strap, and Raspberry Pi Board. Determine if all 4 objects are also in Image B. If missing, list the names.' | |
| txt_display_1 = 'name the missing items on B' | |
| import os | |
| GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') | |
| genai.configure(api_key=GOOGLE_API_KEY) | |
| # Image to Base 64 Converter | |
| def image_to_base64(image_path): | |
| with open(image_path, 'rb') as img: | |
| encoded_string = base64.b64encode(img.read()) | |
| return encoded_string.decode('utf-8') | |
| def output_query_message(img): | |
| if not img: | |
| return txt_prompt_1 | |
| base64 = image_to_base64(img) | |
| data_url = f"data:image/jpeg;base64,{base64}" | |
| outputText = [(f"{txt_display_1} ", None)] | |
| return outputText | |
| # Function that takes User Inputs, generates Response and displays on Chat UI | |
| def output_llm_response(img): | |
| if not img: | |
| response = txt_model.generate_content(txt_prompt_1) | |
| return response.text | |
| else: | |
| img = PIL.Image.open(img) | |
| response = vis_model.generate_content([txt_prompt_1,img]) | |
| return response.text | |
| with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1: | |
| with gr.Column(): | |
| outputbox = gr.Textbox(label="line clearance...") | |
| image_box = gr.Image(type="filepath") | |
| btn = gr.Button("Check This") | |
| clicked = btn.click(output_query_message, | |
| [image_box], | |
| outputbox | |
| ).then(output_llm_response, | |
| [image_box], | |
| outputbox | |
| ) | |
| gr.Markdown(""" | |
| ## SOP-302: Line Clearance ## | |
| <h5 align="center"><i>"XXXX here here."</i></h5> | |
| Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output. | |
| """) | |
| app1.queue() | |
| app1.launch() |