File size: 3,581 Bytes
46861c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# --------------------------------------------------------
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License")
# Grasp Any Region Project
# Written by Haochen Wang
# --------------------------------------------------------

import argparse

import numpy as np
import torch
from PIL import Image
from transformers import AutoModel, AutoProcessor, GenerationConfig

from evaluation.eval_dataset import SingleRegionCaptionDataset

TORCH_DTYPE_MAP = dict(fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Inference demo of Grasp Any Region models."
    )

    parser.add_argument(
        "--model_name_or_path",
        help="HF model name or path",
        default="HaochenWang/GAR-8B",
    )
    parser.add_argument(
        "--image_path",
        help="image path",
        required=True,
    )
    parser.add_argument(
        "--mask_path",
        help="mask path",
        required=True,
    )
    parser.add_argument(
        "--data_type",
        help="data dtype",
        type=str,
        choices=["fp16", "bf16", "fp32"],
        default="bf16",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Random seed for reproducible text generation",
    )
    args = parser.parse_args()
    return args


def select_ann(coco, img_id, area_min=None, area_max=None):
    cat_ids = coco.getCatIds()
    ann_ids = coco.getAnnIds(imgIds=[img_id], catIds=cat_ids, iscrowd=None)

    if area_min is not None:
        ann_ids = [
            ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] >= area_min
        ]

    if area_max is not None:
        ann_ids = [
            ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] <= area_max
        ]

    return ann_ids


def main():
    args = parse_args()
    data_dtype = TORCH_DTYPE_MAP[args.data_type]
    torch.manual_seed(args.seed)

    # init ditribution for dispatch_modules in LLM
    torch.cuda.set_device(0)
    torch.distributed.init_process_group(backend="nccl")

    # build HF model
    model = AutoModel.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        torch_dtype=data_dtype,
        device_map="cuda:0",
    ).eval()

    processor = AutoProcessor.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
    )

    img = Image.open(args.image_path)
    mask = np.array(Image.open(args.mask_path).convert("L")).astype(bool)

    prompt_number = model.config.prompt_numbers
    prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + ["<NO_Prompt>"]
    dataset = SingleRegionCaptionDataset(
        image=img,
        mask=mask,
        processor=processor,
        prompt_number=prompt_number,
        visual_prompt_tokens=prompt_tokens,
        data_dtype=data_dtype,
    )

    data_sample = dataset[0]

    with torch.no_grad():
        generate_ids = model.generate(
            **data_sample,
            generation_config=GenerationConfig(
                max_new_tokens=1024,
                do_sample=False,
                eos_token_id=processor.tokenizer.eos_token_id,
                pad_token_id=processor.tokenizer.pad_token_id,
            ),
            return_dict=True,
        )

    outputs = processor.tokenizer.decode(
        generate_ids.sequences[0], skip_special_tokens=True
    ).strip()

    print(outputs)  # Print model output for this image


if __name__ == "__main__":
    main()