# -------------------------------------------------------- # Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License") # Grasp Any Region Project # Written by Haochen Wang and Yuhao Wang # -------------------------------------------------------- import argparse import base64 import io import json import os import re import numpy as np import openai from PIL import Image from pycocotools import mask as mask_utils from pycocotools.coco import COCO from tqdm import tqdm # Define Azure OpenAI details model_name = "gpt-4o-2024-11-20" max_tokens = 1000 # range: [1, 4095] # Initialize the Azure client client = openai.AzureOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2024-03-01-preview", ) prompt_ann = """ You are a language model expert. Your task is to evaluate the correctness of the model's output based on the provided ground truth and given masks. - Ground truth: "{answer}" - Model Output: "{model_output}" Please determine if the model's output conveys the same meaning as the provided ground truth. If the output is semantically correct, return "True", otherwise return "False". Attention: 1. The ground truth and model output do not need to match exactly, as long as they convey the same meaning. Synonyms and different phrasings are acceptable. 2. Do not output any reasoning. Do not perform correction. Please output only "True" or "False". """ def process_questions(outputs): pattern = r"^```json\s*|\s*```$" try: cleaned_str = re.sub(pattern, "", outputs, flags=re.MULTILINE) questions_data = json.loads(cleaned_str) except: print("Error in parsing JSON") return [] return questions_data def encode_pil_image_to_base64(pil_image): buffered = io.BytesIO() pil_image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return img_str def mask_to_box(mask_np): mask_coords = np.argwhere(mask_np) y0, x0 = mask_coords.min(axis=0) y1, x1 = mask_coords.max(axis=0) + 1 h = y1 - y0 w = x1 - x0 return x0, y0, w, h def query(messages): # Adjusted to use the Azure OpenAI client with the specified parameters response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": content}], max_tokens=max_tokens, temperature=temperature, top_p=1, frequency_penalty=0, presence_penalty=0, ) message = response.choices[0].message.content return message if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate model outputs") parser.add_argument("--pred", type=str, help="Path to the model") parser.add_argument("--min_box_w", type=int, help="Minimum width", default=56) parser.add_argument("--min_box_h", type=int, help="Minimum height", default=56) parser.add_argument( "--image_folder", type=str, default="evaluation/GAR-Bench/annotations" ) args = parser.parse_args() with open(args.pred, "r") as f: data = json.load(f) output_json = [] total = 0 true = 0 for item in tqdm(data): total = total + 1 answer = item["answer"] model_output = item["model_output"] prompt = prompt_ann.format(answer=answer, model_output=model_output) img = Image.open(os.path.join(args.image_folder, item["image"])) img_np = np.array(img) base64_image = encode_pil_image_to_base64(img) content = [ {"type": "text", "text": "\n1. The original image:\n"}, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, }, ] for mask_idx, mask_rle in enumerate(item["mask_rles"]): mask_np = mask_utils.decode(mask_rle).astype(np.uint8) pil_mask = Image.fromarray((mask_np * 255).astype(np.uint8)) assert ( img_np.shape[:2] == mask_np.shape ), f"image shape mismatches with mask shape: {img_np.shape}, {mask_np.shape}" img_h, img_w = img_np.shape[:2] x0, y0, w, h = mask_to_box(mask_np) xc, yc = x0 + w / 2, y0 + h / 2 # focal_crop: need to have at least min_box_w and min_box_h pixels, otherwise resizing to (384, 384) leads to artifacts that may be OOD w, h = max(w, args.min_box_w), max(h, args.min_box_h) x0, y0 = int(xc - w / 2), int(yc - h / 2) cropped_mask_np = mask_np[ max(y0 - h, 0) : min(y0 + 2 * h, img_h), max(x0 - w, 0) : min(x0 + 2 * w, img_w), ] cropped_img_np = img_np[ max(y0 - h, 0) : min(y0 + 2 * h, img_h), max(x0 - w, 0) : min(x0 + 2 * w, img_w), ] cropped_pil_img = Image.fromarray(cropped_img_np) cropped_pil_mask = Image.fromarray((cropped_mask_np * 255).astype(np.uint8)) base64_cropped_image = encode_pil_image_to_base64(cropped_pil_img) base64_cropped_mask = encode_pil_image_to_base64(cropped_pil_mask) content.extend( [ { "type": "text", "text": f"\n{2 * mask_idx + 2}. :\n", }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_cropped_image}" }, }, { "type": "text", "text": f"\n{2 * mask_idx + 3}. The mask of :\n", }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_cropped_mask}" }, }, ] ) content.append({"type": "text", "text": prompt}) messages = [{"role": "user", "content": content}] outputs = query(messages) print(outputs) if outputs == "True": true = true + 1 item.update({"eval_result": outputs}) output_json.append(item) print("Accuracy: ", true / total) with open(args.pred.replace(".json", "_eval.json"), "w") as f: json.dump(output_json, f, indent=4)