Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,101 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
max_tokens,
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
)
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
-
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
This script creates a Gradio chatbot interface for the ibm-granite/granite-3.3-8b-instruct model.
|
| 3 |
|
| 4 |
+
Key Features:
|
| 5 |
+
- Loads the model and tokenizer from Hugging Face Hub.
|
| 6 |
+
- Uses a chat interface for interactive conversations.
|
| 7 |
+
- Manages chat history to maintain context.
|
| 8 |
+
- Handles API key management through Hugging Face Spaces secrets.
|
| 9 |
+
'''
|
| 10 |
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 14 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# --- Configuration ---
|
| 17 |
+
MODEL_ID = "ibm-granite/granite-3.3-8b-instruct"
|
| 18 |
|
| 19 |
+
# --- Model and Tokenizer Loading ---
|
| 20 |
+
def load_model_and_tokenizer():
|
| 21 |
+
'''Load the model and tokenizer, handling potential errors.'''
|
| 22 |
+
try:
|
| 23 |
+
# Securely get the Hugging Face token from secrets
|
| 24 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 25 |
+
if not hf_token:
|
| 26 |
+
raise ValueError("HUGGINGFACE_TOKEN secret not found. Please add it to your Space settings.")
|
| 27 |
|
| 28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
MODEL_ID,
|
| 32 |
+
device_map=device,
|
| 33 |
+
torch_dtype=torch.bfloat16,
|
| 34 |
+
token=hf_token
|
| 35 |
+
)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=hf_token)
|
| 37 |
+
|
| 38 |
+
return model, tokenizer, device
|
| 39 |
+
except Exception as e:
|
| 40 |
+
# Provide a user-friendly error message
|
| 41 |
+
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
|
| 42 |
|
| 43 |
+
model, tokenizer, device = load_model_and_tokenizer()
|
| 44 |
|
| 45 |
+
# --- Chatbot Logic ---
|
| 46 |
+
def chat_function(message, history):
|
| 47 |
+
'''
|
| 48 |
+
This function processes the user's message and returns the model's response.
|
| 49 |
+
'''
|
| 50 |
+
# Set seed for reproducibility
|
| 51 |
+
set_seed(42)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# Format the conversation history for the model
|
| 54 |
+
conv = []
|
| 55 |
+
for user_msg, model_msg in history:
|
| 56 |
+
conv.append({"role": "user", "content": user_msg})
|
| 57 |
+
conv.append({"role": "assistant", "content": model_msg})
|
| 58 |
+
conv.append({"role": "user", "content": message})
|
| 59 |
|
| 60 |
+
# Tokenize the input
|
| 61 |
+
input_ids = tokenizer.apply_chat_template(
|
| 62 |
+
conv,
|
| 63 |
+
return_tensors="pt",
|
| 64 |
+
thinking=False, # Set to False for direct response
|
| 65 |
+
add_generation_prompt=True
|
| 66 |
+
).to(device)
|
| 67 |
|
| 68 |
+
# Generate the response
|
| 69 |
+
output = model.generate(
|
| 70 |
+
input_ids,
|
| 71 |
+
max_new_tokens=1024,
|
| 72 |
+
do_sample=True,
|
| 73 |
+
top_k=50,
|
| 74 |
+
top_p=0.95,
|
| 75 |
+
temperature=0.7,
|
| 76 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
# Decode the prediction
|
| 79 |
+
prediction = tokenizer.decode(output[0, input_ids.shape[1]:], skip_special_tokens=True)
|
| 80 |
+
|
| 81 |
+
return prediction
|
| 82 |
|
| 83 |
+
# --- Gradio Interface ---
|
| 84 |
+
def create_gradio_interface():
|
| 85 |
+
'''Create and return the Gradio ChatInterface.'''
|
| 86 |
+
return gr.ChatInterface(
|
| 87 |
+
fn=chat_function,
|
| 88 |
+
title="Granite 3.3 8B Chatbot",
|
| 89 |
+
description="A chatbot powered by the ibm-granite/granite-3.3-8b-instruct model. Ask any question!",
|
| 90 |
+
theme="soft",
|
| 91 |
+
examples=[
|
| 92 |
+
["Hello, who are you?"],
|
| 93 |
+
["What is the capital of France?"],
|
| 94 |
+
["Explain the theory of relativity in simple terms."]
|
| 95 |
+
]
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
# --- Main Execution ---
|
| 99 |
if __name__ == "__main__":
|
| 100 |
+
chatbot_interface = create_gradio_interface()
|
| 101 |
+
chatbot_interface.launch()
|