File size: 12,124 Bytes
b3a1181
bfd60b5
 
95e2d44
bfd60b5
95e2d44
 
bfd60b5
6cc7643
 
bfd60b5
 
2a37a1f
e157e7f
95e2d44
 
 
 
bfd60b5
524d875
95e2d44
 
 
524d875
 
 
95e2d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d44787
 
 
 
 
 
 
 
aa76f48
 
4d44787
 
 
aa76f48
 
 
 
 
 
 
 
 
 
 
 
 
f9212b1
 
 
 
 
 
 
 
 
 
 
 
 
95e2d44
 
e956cc6
 
 
 
4d44787
f9212b1
4d44787
 
bfd60b5
95e2d44
 
 
 
 
 
bfd60b5
f9212b1
95e2d44
bfd60b5
524d875
bfd60b5
524d875
 
c1640c2
 
524d875
 
bfd60b5
524d875
bfd60b5
2a37a1f
c1640c2
 
524d875
 
bfd60b5
524d875
bfd60b5
 
524d875
 
bfd60b5
524d875
bfd60b5
e157e7f
524d875
 
 
 
bfd60b5
524d875
bfd60b5
95e2d44
bfd60b5
95e2d44
 
 
 
 
 
 
 
 
 
bfd60b5
 
95e2d44
 
bfd60b5
524d875
 
bfd60b5
524d875
 
bfd60b5
 
 
 
95e2d44
 
 
 
 
bfd60b5
95e2d44
 
a382f89
95e2d44
 
bfd60b5
95e2d44
 
 
 
2bba772
95e2d44
 
 
 
e956cc6
95e2d44
c2e58d6
bfd60b5
95e2d44
bfd60b5
 
95e2d44
bfd60b5
95e2d44
 
 
 
 
 
 
 
 
bfd60b5
95e2d44
 
bfd60b5
95e2d44
 
bfd60b5
95e2d44
bfd60b5
95e2d44
 
 
 
 
 
 
 
 
 
bfd60b5
95e2d44
 
 
bfd60b5
95e2d44
 
bfd60b5
95e2d44
 
bfd60b5
95e2d44
f9212b1
95e2d44
 
 
 
bfd60b5
95e2d44
 
 
 
 
bfd60b5
95e2d44
 
 
 
bfd60b5
524d875
e956cc6
6cc7643
 
 
 
 
 
 
 
e956cc6
467f36e
 
 
 
 
f9212b1
467f36e
f9212b1
 
 
 
 
467f36e
 
 
 
bfd60b5
60a9385
 
 
 
 
0665a00
a382f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9212b1
a382f89
 
 
f9212b1
 
 
 
 
7762653
4d44787
 
f9212b1
 
bfd60b5
2bba772
bfd60b5
95e2d44
 
 
2bba772
 
ee18002
 
2bba772
95e2d44
5f8ca6f
1291bc6
7762653
1291bc6
2bba772
1291bc6
5f8ca6f
bfd60b5
95e2d44
4d44787
95e2d44
f9212b1
95e2d44
 
 
bfd60b5
95e2d44
6cc7643
 
 
bfd60b5
 
2bba772
bfd60b5
 
95e2d44
f9212b1
f2fb2f9
bfd60b5
95e2d44
bfd60b5
4d44787
 
bfd60b5
 
4d44787
bfd60b5
6cc7643
 
 
 
 
 
 
bfd60b5
95e2d44
 
 
 
 
 
 
 
 
467f36e
95e2d44
 
 
a382f89
2bba772
467f36e
95e2d44
 
6cc7643
5680e93
6cc7643
95e2d44
7762653
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import spaces
import logging
import os
import random
import re
import sys
import warnings

from PIL import Image
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel

# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================


os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)

RES_CHOICES = {
    "1024": [
        "1024x1024 ( 1:1 )",
        "1152x896 ( 9:7 )",
        "896x1152 ( 7:9 )",
        "1152x864 ( 4:3 )",
        "864x1152 ( 3:4 )",
        "1248x832 ( 3:2 )",
        "832x1248 ( 2:3 )",
        "1280x720 ( 16:9 )",
        "720x1280 ( 9:16 )",
        "1344x576 ( 21:9 )",
        "576x1344 ( 9:21 )",
    ],
    "1280": [
        "1280x1280 ( 1:1 )",
        "1440x1120 ( 9:7 )",
        "1120x1440 ( 7:9 )",
        "1472x1104 ( 4:3 )",
        "1104x1472 ( 3:4 )",
        "1536x1024 ( 3:2 )",
        "1024x1536 ( 2:3 )",
        "1536x864 ( 16:9 )",
        "864x1536 ( 9:16 )",
        "1680x720 ( 21:9 )",
        "720x1680 ( 9:21 )",
    ],
    "1536": [
        "1536x1536 ( 1:1 )",
        "1728x1344 ( 9:7 )",
        "1344x1728 ( 7:9 )",
        "1728x1296 ( 4:3 )",
        "1296x1728 ( 3:4 )",
        "1872x1248 ( 3:2 )",
        "1248x1872 ( 2:3 )",
        "2048x1152 ( 16:9 )",
        "1152x2048 ( 9:16 )",
        "2016x864 ( 21:9 )",
        "864x2016 ( 9:21 )",
    ],
    "2048": [
        "2048x2048 ( 1:1 )",
        "2304x1792 ( 9:7 )",
        "1792x2304 ( 7:9 )",
        "2304x1728 ( 4:3 )",
        "1728x2304 ( 3:4 )",
        "2496x1664 ( 3:2 )",
        "1664x2496 ( 2:3 )",
        "2720x1536 ( 16:9 )",
        "1536x2720 ( 9:16 )",
        "2688x1152 ( 21:9 )",
        "1152x2688 ( 9:21 )",
    ],
}

RESOLUTION_SET = []
for resolutions in RES_CHOICES.values():
    RESOLUTION_SET.extend(resolutions)

EXAMPLE_PROMPTS = [
    ["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"]
]


def get_resolution(resolution):
    match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
    if match:
        return int(match.group(1)), int(match.group(2))
    return 1024, 1024


def load_models(model_path, enable_compile=False, attention_backend="flash_3"):
    print(f"Loading models from {model_path}...")

    use_auth_token = HF_TOKEN if HF_TOKEN else True

    if not os.path.exists(model_path):
        vae = AutoencoderKL.from_pretrained(
            f"{model_path}",
            subfolder="vae",
            torch_dtype=torch.bfloat16,
            device_map="cuda",
            use_auth_token=use_auth_token,
        )

        text_encoder = AutoModelForCausalLM.from_pretrained(
            f"{model_path}",
            subfolder="text_encoder",
            torch_dtype=torch.bfloat16,
            device_map="cuda",
            use_auth_token=use_auth_token,
        ).eval()

        tokenizer = AutoTokenizer.from_pretrained(f"{model_path}", subfolder="tokenizer", use_auth_token=use_auth_token)
    else:
        vae = AutoencoderKL.from_pretrained(
            os.path.join(model_path, "vae"), torch_dtype=torch.bfloat16, device_map="cuda"
        )

        text_encoder = AutoModelForCausalLM.from_pretrained(
            os.path.join(model_path, "text_encoder"),
            torch_dtype=torch.bfloat16,
            device_map="cuda",
        ).eval()

        tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))

    tokenizer.padding_side = "left"

    if enable_compile:
        print("Enabling torch.compile optimizations...")
        torch._inductor.config.conv_1x1_as_mm = True
        torch._inductor.config.coordinate_descent_tuning = True
        torch._inductor.config.epilogue_fusion = False
        torch._inductor.config.coordinate_descent_check_all_directions = True
        torch._inductor.config.max_autotune_gemm = True
        torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
        torch._inductor.config.triton.cudagraphs = False

    pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)

    if enable_compile:
        pipe.vae.disable_tiling()

    if not os.path.exists(model_path):
        transformer = ZImageTransformer2DModel.from_pretrained(
            f"{model_path}", subfolder="transformer", use_auth_token=use_auth_token
        ).to("cuda", torch.bfloat16)
    else:
        transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer")).to(
            "cuda", torch.bfloat16
        )

    pipe.transformer = transformer
    pipe.transformer.set_attention_backend(attention_backend)

    if enable_compile:
        print("Compiling transformer...")
        pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)

    pipe.to("cuda", torch.bfloat16)

    return pipe


def generate_image(
    pipe,
    prompt,
    resolution="1024x1024",
    seed=42,
    guidance_scale=5.0,
    num_inference_steps=50,
    shift=3.0,
    max_sequence_length=512,
    progress=gr.Progress(track_tqdm=True),
):
    width, height = get_resolution(resolution)

    generator = torch.Generator("cuda").manual_seed(seed)

    scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
    pipe.scheduler = scheduler

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        max_sequence_length=max_sequence_length,
    ).images[0]

    return image


def warmup_model(pipe, resolutions):
    print("Starting warmup phase...")

    dummy_prompt = "warmup"

    for res_str in resolutions:
        print(f"Warming up for resolution: {res_str}")
        try:
            for i in range(3):
                generate_image(
                    pipe,
                    prompt=dummy_prompt,
                    resolution=res_str,
                    num_inference_steps=9,
                    guidance_scale=0.0,
                    seed=42 + i,
                )
        except Exception as e:
            print(f"Warmup failed for {res_str}: {e}")

    print("Warmup completed.")


pipe = None


def init_app():
    global pipe

    try:
        pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
        print(f"Model loaded. Compile: {ENABLE_COMPILE}, Backend: {ATTENTION_BACKEND}")

        if ENABLE_WARMUP:
            all_resolutions = []
            for cat in RES_CHOICES.values():
                all_resolutions.extend(cat)
            warmup_model(pipe, all_resolutions)

    except Exception as e:
        print(f"Error loading model: {e}")
        pipe = None


@spaces.GPU
def generate(
    prompt,
    resolution="1024x1024 ( 1:1 )",
    seed=42,
    steps=9,
    shift=3.0,
    random_seed=True,
    gallery_images=None,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Generate an image using the Z-Image model based on the provided prompt and settings.

    Args:
        prompt (str): Text prompt describing the desired image content
        resolution (str): Output resolution
        seed (int): Seed for reproducible generation
        steps (int): Number of inference steps
        shift (float): Time shift parameter
        random_seed (bool): Whether to generate a new random seed
        gallery_images (list): List of previously generated images
        progress (gr.Progress): Gradio progress tracker

    Returns:
        tuple: (gallery_images, seed_str, seed_int)
    """

    if random_seed:
        new_seed = random.randint(1, 1000000)
    else:
        new_seed = seed if seed != -1 else random.randint(1, 1000000)

    try:
        if pipe is None:
            raise gr.Error("Model not loaded.")

        final_prompt = prompt

        try:
            resolution_str = resolution.split(" ")[0]
        except:
            resolution_str = "1024x1024"

        image = generate_image(
            pipe=pipe,
            prompt=final_prompt,
            resolution=resolution_str,
            seed=new_seed,
            guidance_scale=0.0,
            num_inference_steps=int(steps),
            shift=shift,
        )

    except Exception as e:
        print(f"Error generation: {e}")
        # Return empty/error image or re-raise
        # For now, just re-raising to let Gradio handle or user see error
        raise e

    if gallery_images is None:
        gallery_images = []
    
    gallery_images = [image] + gallery_images

    return gallery_images, str(new_seed), int(new_seed)


init_app()

# ==================== AoTI (Ahead of Time Inductor compilation) ====================

# pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
# spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")

with gr.Blocks(title="Z-Image Demo") as demo:
    gr.Markdown(
        """<div align="center">

# Z-Image Generation Demo

</div>"""
    )

    with gr.Row():
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
            
            with gr.Row():
                choices = [int(k) for k in RES_CHOICES.keys()]
                res_cat = gr.Dropdown(value=1024, choices=choices, label="Resolution Category")

                initial_res_choices = RES_CHOICES["1024"]
                resolution = gr.Dropdown(
                    value=initial_res_choices[0], choices=RESOLUTION_SET, label="Width x Height (Ratio)"
                )

            with gr.Row():
                seed = gr.Number(label="Seed", value=42, precision=0)
                random_seed = gr.Checkbox(label="Random Seed", value=True)

            with gr.Row():
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=True)
                shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)

            generate_btn = gr.Button("Generate", variant="primary")

            # Example prompts
            gr.Markdown("### 📝 Example Prompts")
            gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(
                label="Generated Images",
                columns=2,
                rows=2,
                height=600,
                object_fit="contain",
                format="png",
                interactive=False,
            )
            used_seed = gr.Textbox(label="Seed Used", interactive=False)

    def update_res_choices(_res_cat):
        if str(_res_cat) in RES_CHOICES:
            res_choices = RES_CHOICES[str(_res_cat)]
        else:
            res_choices = RES_CHOICES["1024"]
        return gr.update(value=res_choices[0], choices=res_choices)

    res_cat.change(update_res_choices, inputs=res_cat, outputs=resolution, api_visibility="private")

    generate_btn.click(
        generate,
        inputs=[prompt_input, resolution, seed, steps, shift, random_seed, output_gallery],
        outputs=[output_gallery, used_seed, seed],
        api_visibility="public",
    )

css = """
.fillable{max-width: 1230px !important}
"""
if __name__ == "__main__":
    demo.launch(css=css, mcp_server=True)