Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,124 Bytes
b3a1181 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 6cc7643 bfd60b5 2a37a1f e157e7f 95e2d44 bfd60b5 524d875 95e2d44 524d875 95e2d44 4d44787 aa76f48 4d44787 aa76f48 f9212b1 95e2d44 e956cc6 4d44787 f9212b1 4d44787 bfd60b5 95e2d44 bfd60b5 f9212b1 95e2d44 bfd60b5 524d875 bfd60b5 524d875 c1640c2 524d875 bfd60b5 524d875 bfd60b5 2a37a1f c1640c2 524d875 bfd60b5 524d875 bfd60b5 524d875 bfd60b5 524d875 bfd60b5 e157e7f 524d875 bfd60b5 524d875 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 524d875 bfd60b5 524d875 bfd60b5 95e2d44 bfd60b5 95e2d44 a382f89 95e2d44 bfd60b5 95e2d44 2bba772 95e2d44 e956cc6 95e2d44 c2e58d6 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 f9212b1 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 bfd60b5 524d875 e956cc6 6cc7643 e956cc6 467f36e f9212b1 467f36e f9212b1 467f36e bfd60b5 60a9385 0665a00 a382f89 f9212b1 a382f89 f9212b1 7762653 4d44787 f9212b1 bfd60b5 2bba772 bfd60b5 95e2d44 2bba772 ee18002 2bba772 95e2d44 5f8ca6f 1291bc6 7762653 1291bc6 2bba772 1291bc6 5f8ca6f bfd60b5 95e2d44 4d44787 95e2d44 f9212b1 95e2d44 bfd60b5 95e2d44 6cc7643 bfd60b5 2bba772 bfd60b5 95e2d44 f9212b1 f2fb2f9 bfd60b5 95e2d44 bfd60b5 4d44787 bfd60b5 4d44787 bfd60b5 6cc7643 bfd60b5 95e2d44 467f36e 95e2d44 a382f89 2bba772 467f36e 95e2d44 6cc7643 5680e93 6cc7643 95e2d44 7762653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import spaces
import logging
import os
import random
import re
import sys
import warnings
from PIL import Image
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)
RES_CHOICES = {
"1024": [
"1024x1024 ( 1:1 )",
"1152x896 ( 9:7 )",
"896x1152 ( 7:9 )",
"1152x864 ( 4:3 )",
"864x1152 ( 3:4 )",
"1248x832 ( 3:2 )",
"832x1248 ( 2:3 )",
"1280x720 ( 16:9 )",
"720x1280 ( 9:16 )",
"1344x576 ( 21:9 )",
"576x1344 ( 9:21 )",
],
"1280": [
"1280x1280 ( 1:1 )",
"1440x1120 ( 9:7 )",
"1120x1440 ( 7:9 )",
"1472x1104 ( 4:3 )",
"1104x1472 ( 3:4 )",
"1536x1024 ( 3:2 )",
"1024x1536 ( 2:3 )",
"1536x864 ( 16:9 )",
"864x1536 ( 9:16 )",
"1680x720 ( 21:9 )",
"720x1680 ( 9:21 )",
],
"1536": [
"1536x1536 ( 1:1 )",
"1728x1344 ( 9:7 )",
"1344x1728 ( 7:9 )",
"1728x1296 ( 4:3 )",
"1296x1728 ( 3:4 )",
"1872x1248 ( 3:2 )",
"1248x1872 ( 2:3 )",
"2048x1152 ( 16:9 )",
"1152x2048 ( 9:16 )",
"2016x864 ( 21:9 )",
"864x2016 ( 9:21 )",
],
"2048": [
"2048x2048 ( 1:1 )",
"2304x1792 ( 9:7 )",
"1792x2304 ( 7:9 )",
"2304x1728 ( 4:3 )",
"1728x2304 ( 3:4 )",
"2496x1664 ( 3:2 )",
"1664x2496 ( 2:3 )",
"2720x1536 ( 16:9 )",
"1536x2720 ( 9:16 )",
"2688x1152 ( 21:9 )",
"1152x2688 ( 9:21 )",
],
}
RESOLUTION_SET = []
for resolutions in RES_CHOICES.values():
RESOLUTION_SET.extend(resolutions)
EXAMPLE_PROMPTS = [
["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"]
]
def get_resolution(resolution):
match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
if match:
return int(match.group(1)), int(match.group(2))
return 1024, 1024
def load_models(model_path, enable_compile=False, attention_backend="flash_3"):
print(f"Loading models from {model_path}...")
use_auth_token = HF_TOKEN if HF_TOKEN else True
if not os.path.exists(model_path):
vae = AutoencoderKL.from_pretrained(
f"{model_path}",
subfolder="vae",
torch_dtype=torch.bfloat16,
device_map="cuda",
use_auth_token=use_auth_token,
)
text_encoder = AutoModelForCausalLM.from_pretrained(
f"{model_path}",
subfolder="text_encoder",
torch_dtype=torch.bfloat16,
device_map="cuda",
use_auth_token=use_auth_token,
).eval()
tokenizer = AutoTokenizer.from_pretrained(f"{model_path}", subfolder="tokenizer", use_auth_token=use_auth_token)
else:
vae = AutoencoderKL.from_pretrained(
os.path.join(model_path, "vae"), torch_dtype=torch.bfloat16, device_map="cuda"
)
text_encoder = AutoModelForCausalLM.from_pretrained(
os.path.join(model_path, "text_encoder"),
torch_dtype=torch.bfloat16,
device_map="cuda",
).eval()
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
tokenizer.padding_side = "left"
if enable_compile:
print("Enabling torch.compile optimizations...")
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.max_autotune_gemm = True
torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
torch._inductor.config.triton.cudagraphs = False
pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)
if enable_compile:
pipe.vae.disable_tiling()
if not os.path.exists(model_path):
transformer = ZImageTransformer2DModel.from_pretrained(
f"{model_path}", subfolder="transformer", use_auth_token=use_auth_token
).to("cuda", torch.bfloat16)
else:
transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer")).to(
"cuda", torch.bfloat16
)
pipe.transformer = transformer
pipe.transformer.set_attention_backend(attention_backend)
if enable_compile:
print("Compiling transformer...")
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
pipe.to("cuda", torch.bfloat16)
return pipe
def generate_image(
pipe,
prompt,
resolution="1024x1024",
seed=42,
guidance_scale=5.0,
num_inference_steps=50,
shift=3.0,
max_sequence_length=512,
progress=gr.Progress(track_tqdm=True),
):
width, height = get_resolution(resolution)
generator = torch.Generator("cuda").manual_seed(seed)
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
pipe.scheduler = scheduler
image = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
max_sequence_length=max_sequence_length,
).images[0]
return image
def warmup_model(pipe, resolutions):
print("Starting warmup phase...")
dummy_prompt = "warmup"
for res_str in resolutions:
print(f"Warming up for resolution: {res_str}")
try:
for i in range(3):
generate_image(
pipe,
prompt=dummy_prompt,
resolution=res_str,
num_inference_steps=9,
guidance_scale=0.0,
seed=42 + i,
)
except Exception as e:
print(f"Warmup failed for {res_str}: {e}")
print("Warmup completed.")
pipe = None
def init_app():
global pipe
try:
pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
print(f"Model loaded. Compile: {ENABLE_COMPILE}, Backend: {ATTENTION_BACKEND}")
if ENABLE_WARMUP:
all_resolutions = []
for cat in RES_CHOICES.values():
all_resolutions.extend(cat)
warmup_model(pipe, all_resolutions)
except Exception as e:
print(f"Error loading model: {e}")
pipe = None
@spaces.GPU
def generate(
prompt,
resolution="1024x1024 ( 1:1 )",
seed=42,
steps=9,
shift=3.0,
random_seed=True,
gallery_images=None,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate an image using the Z-Image model based on the provided prompt and settings.
Args:
prompt (str): Text prompt describing the desired image content
resolution (str): Output resolution
seed (int): Seed for reproducible generation
steps (int): Number of inference steps
shift (float): Time shift parameter
random_seed (bool): Whether to generate a new random seed
gallery_images (list): List of previously generated images
progress (gr.Progress): Gradio progress tracker
Returns:
tuple: (gallery_images, seed_str, seed_int)
"""
if random_seed:
new_seed = random.randint(1, 1000000)
else:
new_seed = seed if seed != -1 else random.randint(1, 1000000)
try:
if pipe is None:
raise gr.Error("Model not loaded.")
final_prompt = prompt
try:
resolution_str = resolution.split(" ")[0]
except:
resolution_str = "1024x1024"
image = generate_image(
pipe=pipe,
prompt=final_prompt,
resolution=resolution_str,
seed=new_seed,
guidance_scale=0.0,
num_inference_steps=int(steps),
shift=shift,
)
except Exception as e:
print(f"Error generation: {e}")
# Return empty/error image or re-raise
# For now, just re-raising to let Gradio handle or user see error
raise e
if gallery_images is None:
gallery_images = []
gallery_images = [image] + gallery_images
return gallery_images, str(new_seed), int(new_seed)
init_app()
# ==================== AoTI (Ahead of Time Inductor compilation) ====================
# pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
# spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
with gr.Blocks(title="Z-Image Demo") as demo:
gr.Markdown(
"""<div align="center">
# Z-Image Generation Demo
</div>"""
)
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
with gr.Row():
choices = [int(k) for k in RES_CHOICES.keys()]
res_cat = gr.Dropdown(value=1024, choices=choices, label="Resolution Category")
initial_res_choices = RES_CHOICES["1024"]
resolution = gr.Dropdown(
value=initial_res_choices[0], choices=RESOLUTION_SET, label="Width x Height (Ratio)"
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
random_seed = gr.Checkbox(label="Random Seed", value=True)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=True)
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
generate_btn = gr.Button("Generate", variant="primary")
# Example prompts
gr.Markdown("### 📝 Example Prompts")
gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Generated Images",
columns=2,
rows=2,
height=600,
object_fit="contain",
format="png",
interactive=False,
)
used_seed = gr.Textbox(label="Seed Used", interactive=False)
def update_res_choices(_res_cat):
if str(_res_cat) in RES_CHOICES:
res_choices = RES_CHOICES[str(_res_cat)]
else:
res_choices = RES_CHOICES["1024"]
return gr.update(value=res_choices[0], choices=res_choices)
res_cat.change(update_res_choices, inputs=res_cat, outputs=resolution, api_visibility="private")
generate_btn.click(
generate,
inputs=[prompt_input, resolution, seed, steps, shift, random_seed, output_gallery],
outputs=[output_gallery, used_seed, seed],
api_visibility="public",
)
css = """
.fillable{max-width: 1230px !important}
"""
if __name__ == "__main__":
demo.launch(css=css, mcp_server=True)
|