Update src/streamlit_app.py
Browse files- src/streamlit_app.py +23 -36
src/streamlit_app.py
CHANGED
|
@@ -2,9 +2,8 @@
|
|
| 2 |
import os
|
| 3 |
import streamlit as st
|
| 4 |
import torch
|
| 5 |
-
from transformers import AutoTokenizer, pipeline
|
| 6 |
from peft import PeftModel
|
| 7 |
-
from unsloth import FastLanguageModel
|
| 8 |
|
| 9 |
# -----------------------------
|
| 10 |
# Ensure cache dirs are writable in Spaces
|
|
@@ -15,44 +14,25 @@ os.environ.setdefault("HF_DATASETS_CACHE", "/tmp/huggingface/datasets")
|
|
| 15 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
| 16 |
os.environ.setdefault("XDG_CACHE_HOME", "/tmp/huggingface")
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
BASE_MODEL = "unsloth/llama-3-8b-bnb-4bit"
|
| 22 |
-
ADAPTER_MODEL = "kirubel1738/llama3-biology-qa"
|
| 23 |
|
| 24 |
-
# -----------------------------
|
| 25 |
-
# Load model once
|
| 26 |
-
# -----------------------------
|
| 27 |
@st.cache_resource
|
| 28 |
def load_model():
|
| 29 |
-
"""Load
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
# Load tokenizer
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
model_name=BASE_MODEL,
|
| 38 |
-
max_seq_length=2048,
|
| 39 |
-
dtype=None,
|
| 40 |
-
load_in_4bit=True,
|
| 41 |
-
device_map={"": "cpu"} # force CPU
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
# Apply adapter
|
| 45 |
-
model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL)
|
| 46 |
-
|
| 47 |
-
# Text-generation pipeline on CPU
|
| 48 |
generator = pipeline(
|
| 49 |
"text-generation",
|
| 50 |
model=model,
|
| 51 |
tokenizer=tokenizer,
|
| 52 |
-
device
|
| 53 |
-
max_new_tokens=256,
|
| 54 |
-
do_sample=True,
|
| 55 |
-
temperature=0.7
|
| 56 |
)
|
| 57 |
return generator
|
| 58 |
|
|
@@ -62,9 +42,10 @@ generator = load_model()
|
|
| 62 |
# -----------------------------
|
| 63 |
# Streamlit UI
|
| 64 |
# -----------------------------
|
| 65 |
-
st.set_page_config(page_title="
|
| 66 |
-
st.title("🧬
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
user_input = st.text_area("Enter your biology question:", height=150)
|
| 70 |
|
|
@@ -72,7 +53,13 @@ if st.button("Get Answer"):
|
|
| 72 |
if user_input.strip():
|
| 73 |
with st.spinner("Generating answer..."):
|
| 74 |
try:
|
| 75 |
-
result = generator(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
output_text = result[0]["generated_text"]
|
| 77 |
st.success("Answer:")
|
| 78 |
st.write(output_text)
|
|
@@ -82,4 +69,4 @@ if st.button("Get Answer"):
|
|
| 82 |
st.warning("Please enter a question.")
|
| 83 |
|
| 84 |
st.markdown("---")
|
| 85 |
-
st.caption(
|
|
|
|
| 2 |
import os
|
| 3 |
import streamlit as st
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 6 |
from peft import PeftModel
|
|
|
|
| 7 |
|
| 8 |
# -----------------------------
|
| 9 |
# Ensure cache dirs are writable in Spaces
|
|
|
|
| 14 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
| 15 |
os.environ.setdefault("XDG_CACHE_HOME", "/tmp/huggingface")
|
| 16 |
|
| 17 |
+
# Base and adapter model IDs
|
| 18 |
+
BASE_MODEL = "microsoft/BioGPT-Large-PubMedQA"
|
| 19 |
+
ADAPTER_MODEL = "kirubel1738/biogpt-pubmedqa-finetuned
|
|
|
|
|
|
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
@st.cache_resource
|
| 22 |
def load_model():
|
| 23 |
+
"""Load BioGPT with your Biology-QA adapter."""
|
| 24 |
+
# Pick device automatically
|
| 25 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 26 |
|
|
|
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 28 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
|
| 29 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL) # apply adapter
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
generator = pipeline(
|
| 32 |
"text-generation",
|
| 33 |
model=model,
|
| 34 |
tokenizer=tokenizer,
|
| 35 |
+
device=device
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
return generator
|
| 38 |
|
|
|
|
| 42 |
# -----------------------------
|
| 43 |
# Streamlit UI
|
| 44 |
# -----------------------------
|
| 45 |
+
st.set_page_config(page_title="BioGPT — Biology QA Demo", layout="centered")
|
| 46 |
+
st.title("🧬 BioGPT — Pubmed QA Demo")
|
| 47 |
+
|
| 48 |
+
st.write("Ask a biology-related question and get an answer generated by BioGPT-Large-PubMedQA fine-tuned with your Biology-QA adapter.")
|
| 49 |
|
| 50 |
user_input = st.text_area("Enter your biology question:", height=150)
|
| 51 |
|
|
|
|
| 53 |
if user_input.strip():
|
| 54 |
with st.spinner("Generating answer..."):
|
| 55 |
try:
|
| 56 |
+
result = generator(
|
| 57 |
+
user_input,
|
| 58 |
+
max_new_tokens=128,
|
| 59 |
+
do_sample=True,
|
| 60 |
+
temperature=0.7,
|
| 61 |
+
top_p=0.9
|
| 62 |
+
)
|
| 63 |
output_text = result[0]["generated_text"]
|
| 64 |
st.success("Answer:")
|
| 65 |
st.write(output_text)
|
|
|
|
| 69 |
st.warning("Please enter a question.")
|
| 70 |
|
| 71 |
st.markdown("---")
|
| 72 |
+
st.caption("Model: microsoft/BioGPT-Large-PubMedQA + adapter kirubel1738/biogpt-biology-qa | Runs on CPU/GPU automatically")
|