File size: 17,534 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
 
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
 
 
dc492a2
db6a3b7
 
 
bd46f72
cd41f5f
d7b1815
 
bd46f72
cd41f5f
 
 
 
 
 
 
 
 
 
b7b00e2
db6a3b7
f782ff0
 
 
 
 
db6a3b7
 
f782ff0
db6a3b7
 
f782ff0
db6a3b7
db894f7
cd41f5f
db6a3b7
 
b7b00e2
 
f782ff0
 
 
 
b7b00e2
 
f782ff0
b7b00e2
 
f782ff0
b7b00e2
 
 
 
 
 
9880f3d
 
cd41f5f
 
f782ff0
 
 
 
 
 
 
 
 
 
 
cd41f5f
 
 
 
f782ff0
 
cd41f5f
b7b00e2
 
cd41f5f
 
 
 
 
b7b00e2
f782ff0
 
cd41f5f
dc492a2
db6a3b7
f782ff0
db6a3b7
 
cd41f5f
b7b00e2
 
bd46f72
 
 
 
 
b7b00e2
f782ff0
 
db6a3b7
 
 
f782ff0
 
db6a3b7
cd41f5f
f782ff0
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f782ff0
 
7d475c1
15fe7bc
 
b7b00e2
7d475c1
f782ff0
 
 
 
690b53e
b7b00e2
db6a3b7
f782ff0
cd41f5f
dc492a2
db6a3b7
 
b7b00e2
 
 
 
4ff618c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35f7f5
4ff618c
f35f7f5
 
 
 
 
 
f151d1b
6bfe8a8
 
 
 
f35f7f5
 
 
6bfe8a8
 
 
 
f35f7f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4670c79
f35f7f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4670c79
7d475c1
db6a3b7
f35f7f5
 
 
 
 
 
 
 
b7b00e2
 
4670c79
b7b00e2
4670c79
b7b00e2
6c81e72
b7b00e2
6c81e72
b7b00e2
bd46f72
 
 
 
6c81e72
bd46f72
690b53e
 
6c81e72
bd46f72
690b53e
 
b7b00e2
bd46f72
6c81e72
 
 
f782ff0
6c81e72
db6a3b7
f35f7f5
 
 
 
 
 
 
 
db6a3b7
6c81e72
db894f7
6c81e72
b7b00e2
 
db6a3b7
 
 
cd41f5f
 
 
b7b00e2
6c81e72
 
b7b00e2
 
6c81e72
 
b7b00e2
 
db6a3b7
 
 
cd41f5f
db6a3b7
b7b00e2
 
 
 
 
db6a3b7
 
cd41f5f
 
 
 
f782ff0
 
dc492a2
db6a3b7
dc492a2
 
db6a3b7
 
 
dc492a2
 
b7b00e2
db6a3b7
 
dc492a2
 
db6a3b7
 
f35f7f5
 
 
 
 
 
 
db6a3b7
 
 
 
 
c666caf
 
 
 
f782ff0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image for 3D generation.
    
    This function is called when a user uploads an image or selects an example.
    It applies background removal and other preprocessing steps necessary for
    optimal 3D model generation.

    Args:
        image (Image.Image): The input image from the user

    Returns:
        Image.Image: The preprocessed image ready for 3D generation
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images for multi-image 3D generation.
    
    This function is called when users upload multiple images in the gallery.
    It processes each image to prepare them for the multi-image 3D generation pipeline.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images from the gallery
        
    Returns:
        List[Image.Image]: The preprocessed images ready for 3D generation
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images




def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed for generation.
    
    This function is called by the generate button to determine whether to use
    a random seed or the user-specified seed value.
    
    Args:
        randomize_seed (bool): Whether to generate a random seed
        seed (int): The user-specified seed value
        
    Returns:
        int: The seed to use for generation
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU(duration=120)
def generate_and_extract_glb(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    is_multiimage: bool,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str, str]:
    """
    Convert an image to a 3D model and extract GLB file.

    Args:
        image (Image.Image): The input image.
        multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
        is_multiimage (bool): Whether is in multi-image mode.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
        multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the video of the 3D model.
        str: The path to the extracted GLB file.
        str: The path to the extracted GLB file (for download).
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    
    # Generate 3D model
    if not is_multiimage:
        outputs = pipeline.run(
            image,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )
    else:
        outputs = pipeline.run_multi_image(
            [image[0] for image in multiimages],
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
            mode=multiimage_algo,
        )
    
    # Render video
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    
    # Extract GLB
    gs = outputs['gaussian'][0]
    mesh = outputs['mesh'][0]
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    
    torch.cuda.empty_cache()
    return video_path, glb_path, glb_path






theme = gr.themes.Base().set(
    body_background_fill="#1A1A1A",
    body_background_fill_dark="#1A1A1A",
    body_text_color="#CCCCCC",
    body_text_color_dark="#CCCCCC",
    block_background_fill="#2C2C2C",
    block_background_fill_dark="#2C2C2C",
    block_border_color="#3C3C3C",
    block_border_color_dark="#3C3C3C",
    button_primary_background_fill="#FF8C00",
    button_primary_background_fill_dark="#FF8C00",
    button_primary_background_fill_hover="#FF9F33",
    button_primary_border_color="*primary_500",
    button_primary_text_color="white",
    button_primary_text_color_dark="white",
    block_border_width="1px",
    block_radius="8px"
)

with gr.Blocks(
    theme=theme,
    css="""
    .gradio-container {
        background: #1A1A1A !important;
        color: #CCCCCC !important;
        font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
    }
    
    .gradio-container .footer,
    .gradio-container footer,
    .gradio-container [data-testid="footer"],
    .gradio-container .gradio-footer {
        display: none !important;
    }
    
    .gradio-container .gradio-container {
        padding-bottom: 0 !important;
    }
    
    .gradio-container h1, .gradio-container h2, .gradio-container h3 {
        color: #FFFFFF !important;
        font-weight: bold !important;
    }
    
    .gradio-container .markdown {
        color: #CCCCCC !important;
    }
    
    .gradio-container .tab-nav {
        background: #2C2C2C !important;
        border: none !important;
    }
    
    .gradio-container .tab-nav button {
        background: #2C2C2C !important;
        color: #CCCCCC !important;
        border: none !important;
        border-radius: 8px 8px 0 0 !important;
    }
    
    .gradio-container .tab-nav button.selected {
        background: #FF8C00 !important;
        color: #FFFFFF !important;
    }
    
    .gradio-container .tab-nav button:hover {
        background: #3C3C3C !important;
    }
    
    .gradio-container .tab-nav button.selected:hover {
        background: #FF8C00 !important;
    }
    
    .gradio-container .tab-content {
        background: #2C2C2C !important;
        border: none !important;
        border-radius: 0 0 8px 8px !important;
        padding: 20px !important;
    }
    
    .gradio-container .accordion {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
        margin: 10px 0 !important;
    }
    
    .gradio-container .accordion .accordion-header {
        background: #2C2C2C !important;
        color: #FFFFFF !important;
        border: none !important;
        border-radius: 8px !important;
    }
    
    .gradio-container .accordion .accordion-content {
        background: #2C2C2C !important;
        color: #CCCCCC !important;
        border: none !important;
        border-radius: 0 0 8px 8px !important;
    }
    
    .gradio-container .button {
        background: #FF8C00 !important;
        color: #FFFFFF !important;
        border: none !important;
        border-radius: 8px !important;
        font-weight: bold !important;
        padding: 12px 24px !important;
    }
    
    .gradio-container .button:hover {
        background: #FF9F33 !important;
    }
    
    .gradio-container .button.secondary {
        background: #3C3C3C !important;
        color: #CCCCCC !important;
    }
    
    .gradio-container .button.secondary:hover {
        background: #4C4C4C !important;
    }
    
    .gradio-container .slider {
        background: #3C3C3C !important;
    }
    
    .gradio-container .slider .slider-handle {
        background: #FF8C00 !important;
        border: 2px solid #FFFFFF !important;
    }
    
    .gradio-container .slider .slider-track {
        background: #3C3C3C !important;
    }
    
    .gradio-container .slider .slider-track-fill {
        background: #FF8C00 !important;
    }
    
    .gradio-container .checkbox {
        color: #CCCCCC !important;
    }
    
    .gradio-container .radio {
        color: #CCCCCC !important;
    }
    
    .gradio-container .gallery {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
    }
    
    .gradio-container .image {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
    }
    
    .gradio-container .video {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
    }
    
    .gradio-container .model3d {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
    }
    
    .gradio-container .row {
        gap: 20px !important;
    }
    
    .gradio-container .column {
        background: #2C2C2C !important;
        border: 1px solid #3C3C3C !important;
        border-radius: 8px !important;
        padding: 20px !important;
    }
    
    .gradio-container .row {
        align-items: flex-start !important;
        justify-content: center !important;
    }
    
    .gradio-container .container {
        max-width: 1200px !important;
        margin: 0 auto !important;
        padding: 20px !important;
    }
    """
) as demo:
    gr.Markdown("""
    <div style="text-align: center; margin-bottom: 30px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
        <h3 style="color: #FFFFFF; margin-bottom: 15px;">Instructions</h3>
        <p style="color: #CCCCCC; margin-bottom: 10px;">
            • Upload an image and click "Generate 3D Asset" to create a 3D model
        </p>
        <p style="color: #CCCCCC; margin-bottom: 10px;">
            • Images with alpha channels will use the existing mask, otherwise background removal is applied automatically
        </p>
        <p style="color: #CCCCCC;">
            • Multi-image mode supports multiple views for enhanced 3D reconstruction
        </p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("""
            <div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
                <h3 style="color: #FFFFFF; margin-bottom: 15px;">3D Model Generation</h3>
                <p style="color: #CCCCCC; margin-bottom: 20px;">Generate 3D models and textures from image or text using AI technology.</p>
            </div>
            """)
            
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
                    image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
                with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                        **Multi-Image Mode:** Upload different views of the same object for enhanced 3D reconstruction.
                        
                        *Note: For best results, ensure consistent lighting and object positioning across views.*
                    """)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("**Stage 1: Sparse Structure Generation**")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("**Stage 2: Structured Latent Generation**")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
            
            with gr.Accordion(label="Output Settings", open=False):
                mesh_simplify = gr.Slider(0.3, 0.98, label="Mesh Simplification", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Resolution", value=1024, step=512)

            generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg")

        with gr.Column(scale=1):
            gr.Markdown("""
            <div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
                <h3 style="color: #FFFFFF; margin-bottom: 15px;">Generated 3D Asset</h3>
                <p style="color: #CCCCCC; margin-bottom: 20px;">Preview and download your generated 3D model.</p>
            </div>
            """)
            
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="3D Model Preview", exposure=10.0, height=300)
            
            download_glb = gr.DownloadButton(label="Download 3D Asset", interactive=False, variant="secondary")  
    
    is_multiimage = gr.State(False)


    # Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    single_image_input_tab.select(
        lambda: False,
        outputs=[is_multiimage]
    )
    multiimage_input_tab.select(
        lambda: True,
        outputs=[is_multiimage]
    )
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )
    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        generate_and_extract_glb,
        inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
        outputs=[video_output, model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )

    video_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    
    gr.Markdown("""
    <div style="text-align: center; margin-top: 40px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
        <p style="color: #CCCCCC; font-size: 0.9rem; margin: 0;">
            Powered by <span style="color: #FF8C00;">Mean Cat Entertainment</span> • Built for the future of VFX
        </p>
    </div>
    """)

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch(mcp_server=True)