File size: 17,534 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 cd41f5f 690b53e db6a3b7 9880f3d 7d475c1 db6a3b7 dc492a2 db6a3b7 bd46f72 cd41f5f d7b1815 bd46f72 cd41f5f b7b00e2 db6a3b7 f782ff0 db6a3b7 f782ff0 db6a3b7 f782ff0 db6a3b7 db894f7 cd41f5f db6a3b7 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 9880f3d cd41f5f f782ff0 cd41f5f f782ff0 cd41f5f b7b00e2 cd41f5f b7b00e2 f782ff0 cd41f5f dc492a2 db6a3b7 f782ff0 db6a3b7 cd41f5f b7b00e2 bd46f72 b7b00e2 f782ff0 db6a3b7 f782ff0 db6a3b7 cd41f5f f782ff0 b7b00e2 f782ff0 7d475c1 15fe7bc b7b00e2 7d475c1 f782ff0 690b53e b7b00e2 db6a3b7 f782ff0 cd41f5f dc492a2 db6a3b7 b7b00e2 4ff618c f35f7f5 4ff618c f35f7f5 f151d1b 6bfe8a8 f35f7f5 6bfe8a8 f35f7f5 4670c79 f35f7f5 4670c79 7d475c1 db6a3b7 f35f7f5 b7b00e2 4670c79 b7b00e2 4670c79 b7b00e2 6c81e72 b7b00e2 6c81e72 b7b00e2 bd46f72 6c81e72 bd46f72 690b53e 6c81e72 bd46f72 690b53e b7b00e2 bd46f72 6c81e72 f782ff0 6c81e72 db6a3b7 f35f7f5 db6a3b7 6c81e72 db894f7 6c81e72 b7b00e2 db6a3b7 cd41f5f b7b00e2 6c81e72 b7b00e2 6c81e72 b7b00e2 db6a3b7 cd41f5f db6a3b7 b7b00e2 db6a3b7 cd41f5f f782ff0 dc492a2 db6a3b7 dc492a2 db6a3b7 dc492a2 b7b00e2 db6a3b7 dc492a2 db6a3b7 f35f7f5 db6a3b7 c666caf f782ff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image for 3D generation.
This function is called when a user uploads an image or selects an example.
It applies background removal and other preprocessing steps necessary for
optimal 3D model generation.
Args:
image (Image.Image): The input image from the user
Returns:
Image.Image: The preprocessed image ready for 3D generation
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images for multi-image 3D generation.
This function is called when users upload multiple images in the gallery.
It processes each image to prepare them for the multi-image 3D generation pipeline.
Args:
images (List[Tuple[Image.Image, str]]): The input images from the gallery
Returns:
List[Image.Image]: The preprocessed images ready for 3D generation
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed for generation.
This function is called by the generate button to determine whether to use
a random seed or the user-specified seed value.
Args:
randomize_seed (bool): Whether to generate a random seed
seed (int): The user-specified seed value
Returns:
int: The seed to use for generation
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def generate_and_extract_glb(
image: Image.Image,
multiimages: List[Tuple[Image.Image, str]],
is_multiimage: bool,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str, str]:
"""
Convert an image to a 3D model and extract GLB file.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the video of the 3D model.
str: The path to the extracted GLB file.
str: The path to the extracted GLB file (for download).
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# Generate 3D model
if not is_multiimage:
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
else:
outputs = pipeline.run_multi_image(
[image[0] for image in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
# Render video
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
# Extract GLB
gs = outputs['gaussian'][0]
mesh = outputs['mesh'][0]
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return video_path, glb_path, glb_path
theme = gr.themes.Base().set(
body_background_fill="#1A1A1A",
body_background_fill_dark="#1A1A1A",
body_text_color="#CCCCCC",
body_text_color_dark="#CCCCCC",
block_background_fill="#2C2C2C",
block_background_fill_dark="#2C2C2C",
block_border_color="#3C3C3C",
block_border_color_dark="#3C3C3C",
button_primary_background_fill="#FF8C00",
button_primary_background_fill_dark="#FF8C00",
button_primary_background_fill_hover="#FF9F33",
button_primary_border_color="*primary_500",
button_primary_text_color="white",
button_primary_text_color_dark="white",
block_border_width="1px",
block_radius="8px"
)
with gr.Blocks(
theme=theme,
css="""
.gradio-container {
background: #1A1A1A !important;
color: #CCCCCC !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
.gradio-container .footer,
.gradio-container footer,
.gradio-container [data-testid="footer"],
.gradio-container .gradio-footer {
display: none !important;
}
.gradio-container .gradio-container {
padding-bottom: 0 !important;
}
.gradio-container h1, .gradio-container h2, .gradio-container h3 {
color: #FFFFFF !important;
font-weight: bold !important;
}
.gradio-container .markdown {
color: #CCCCCC !important;
}
.gradio-container .tab-nav {
background: #2C2C2C !important;
border: none !important;
}
.gradio-container .tab-nav button {
background: #2C2C2C !important;
color: #CCCCCC !important;
border: none !important;
border-radius: 8px 8px 0 0 !important;
}
.gradio-container .tab-nav button.selected {
background: #FF8C00 !important;
color: #FFFFFF !important;
}
.gradio-container .tab-nav button:hover {
background: #3C3C3C !important;
}
.gradio-container .tab-nav button.selected:hover {
background: #FF8C00 !important;
}
.gradio-container .tab-content {
background: #2C2C2C !important;
border: none !important;
border-radius: 0 0 8px 8px !important;
padding: 20px !important;
}
.gradio-container .accordion {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
margin: 10px 0 !important;
}
.gradio-container .accordion .accordion-header {
background: #2C2C2C !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
}
.gradio-container .accordion .accordion-content {
background: #2C2C2C !important;
color: #CCCCCC !important;
border: none !important;
border-radius: 0 0 8px 8px !important;
}
.gradio-container .button {
background: #FF8C00 !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
font-weight: bold !important;
padding: 12px 24px !important;
}
.gradio-container .button:hover {
background: #FF9F33 !important;
}
.gradio-container .button.secondary {
background: #3C3C3C !important;
color: #CCCCCC !important;
}
.gradio-container .button.secondary:hover {
background: #4C4C4C !important;
}
.gradio-container .slider {
background: #3C3C3C !important;
}
.gradio-container .slider .slider-handle {
background: #FF8C00 !important;
border: 2px solid #FFFFFF !important;
}
.gradio-container .slider .slider-track {
background: #3C3C3C !important;
}
.gradio-container .slider .slider-track-fill {
background: #FF8C00 !important;
}
.gradio-container .checkbox {
color: #CCCCCC !important;
}
.gradio-container .radio {
color: #CCCCCC !important;
}
.gradio-container .gallery {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .image {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .video {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .model3d {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .row {
gap: 20px !important;
}
.gradio-container .column {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
padding: 20px !important;
}
.gradio-container .row {
align-items: flex-start !important;
justify-content: center !important;
}
.gradio-container .container {
max-width: 1200px !important;
margin: 0 auto !important;
padding: 20px !important;
}
"""
) as demo:
gr.Markdown("""
<div style="text-align: center; margin-bottom: 30px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Instructions</h3>
<p style="color: #CCCCCC; margin-bottom: 10px;">
• Upload an image and click "Generate 3D Asset" to create a 3D model
</p>
<p style="color: #CCCCCC; margin-bottom: 10px;">
• Images with alpha channels will use the existing mask, otherwise background removal is applied automatically
</p>
<p style="color: #CCCCCC;">
• Multi-image mode supports multiple views for enhanced 3D reconstruction
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">3D Model Generation</h3>
<p style="color: #CCCCCC; margin-bottom: 20px;">Generate 3D models and textures from image or text using AI technology.</p>
</div>
""")
with gr.Tabs() as input_tabs:
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
gr.Markdown("""
**Multi-Image Mode:** Upload different views of the same object for enhanced 3D reconstruction.
*Note: For best results, ensure consistent lighting and object positioning across views.*
""")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("**Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("**Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
with gr.Accordion(label="Output Settings", open=False):
mesh_simplify = gr.Slider(0.3, 0.98, label="Mesh Simplification", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Resolution", value=1024, step=512)
generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("""
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Generated 3D Asset</h3>
<p style="color: #CCCCCC; margin-bottom: 20px;">Preview and download your generated 3D model.</p>
</div>
""")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="3D Model Preview", exposure=10.0, height=300)
download_glb = gr.DownloadButton(label="Download 3D Asset", interactive=False, variant="secondary")
is_multiimage = gr.State(False)
# Handlers
demo.load(start_session)
demo.unload(end_session)
single_image_input_tab.select(
lambda: False,
outputs=[is_multiimage]
)
multiimage_input_tab.select(
lambda: True,
outputs=[is_multiimage]
)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
multiimage_prompt.upload(
preprocess_images,
inputs=[multiimage_prompt],
outputs=[multiimage_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
generate_and_extract_glb,
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
outputs=[video_output, model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
gr.Markdown("""
<div style="text-align: center; margin-top: 40px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
<p style="color: #CCCCCC; font-size: 0.9rem; margin: 0;">
Powered by <span style="color: #FF8C00;">Mean Cat Entertainment</span> • Built for the future of VFX
</p>
</div>
""")
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch(mcp_server=True) |