Spaces:
Runtime error
Runtime error
scheduling_tcd
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from diffusers import AutoPipelineForImage2Image
|
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
import math
|
| 11 |
from DeepCache import DeepCacheSDHelper
|
|
|
|
| 12 |
|
| 13 |
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 14 |
|
|
@@ -30,6 +31,10 @@ def resize(value,img):
|
|
| 30 |
def infer(model_id,source_img, prompt, steps, seed, Strength):
|
| 31 |
pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 32 |
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
start_time = time.time()
|
| 34 |
generator = torch.Generator(device).manual_seed(seed)
|
| 35 |
if int(steps * Strength) < 1:
|
|
@@ -43,7 +48,7 @@ def infer(model_id,source_img, prompt, steps, seed, Strength):
|
|
| 43 |
return image
|
| 44 |
|
| 45 |
gr.Interface(fn=infer, inputs=[
|
| 46 |
-
gr.Text(value="Lykon/dreamshaper-
|
| 47 |
gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
|
| 48 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
| 49 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
|
|
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
import math
|
| 11 |
from DeepCache import DeepCacheSDHelper
|
| 12 |
+
from scheduling_tcd import TCDScheduler
|
| 13 |
|
| 14 |
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 15 |
|
|
|
|
| 31 |
def infer(model_id,source_img, prompt, steps, seed, Strength):
|
| 32 |
pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 33 |
pipe = pipe.to(device)
|
| 34 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 35 |
+
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
| 36 |
+
pipe.load_lora_weights(tcd_lora_id)
|
| 37 |
+
pipe.fuse_lora()
|
| 38 |
start_time = time.time()
|
| 39 |
generator = torch.Generator(device).manual_seed(seed)
|
| 40 |
if int(steps * Strength) < 1:
|
|
|
|
| 48 |
return image
|
| 49 |
|
| 50 |
gr.Interface(fn=infer, inputs=[
|
| 51 |
+
gr.Text(value="Lykon/dreamshaper-xl-v2-turbo", label="Checkpoint"),
|
| 52 |
gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
|
| 53 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
| 54 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|