Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
·
3e124e7
1
Parent(s):
58d404e
Update embed_files
Browse files- app.py +75 -78
- main.py +43 -8
- requirements-dev.txt +5 -1
- run-main.sh +1 -0
app.py
CHANGED
|
@@ -47,21 +47,24 @@ CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
|
|
| 47 |
Wall time: 1min 37s
|
| 48 |
|
| 49 |
"""
|
| 50 |
-
# pylint: disable=broad-
|
| 51 |
import os
|
| 52 |
import time
|
| 53 |
from copy import deepcopy
|
| 54 |
from math import ceil
|
| 55 |
from pathlib import Path
|
| 56 |
-
|
|
|
|
| 57 |
from textwrap import dedent
|
| 58 |
from types import SimpleNamespace
|
| 59 |
from typing import List
|
| 60 |
|
| 61 |
import gradio as gr
|
|
|
|
| 62 |
import more_itertools as mit
|
| 63 |
import torch
|
| 64 |
-
|
|
|
|
| 65 |
from charset_normalizer import detect
|
| 66 |
from chromadb.config import Settings
|
| 67 |
|
|
@@ -77,9 +80,8 @@ from langchain.document_loaders import (
|
|
| 77 |
TextLoader,
|
| 78 |
)
|
| 79 |
from langchain.embeddings import (
|
| 80 |
-
HuggingFaceInstructEmbeddings,
|
| 81 |
SentenceTransformerEmbeddings,
|
| 82 |
-
)
|
| 83 |
from langchain.llms import HuggingFacePipeline, OpenAI
|
| 84 |
from langchain.memory import ConversationBufferMemory
|
| 85 |
from langchain.text_splitter import (
|
|
@@ -112,6 +114,14 @@ if api_key is not None:
|
|
| 112 |
os.environ.setdefault("OPENAI_API_BASE", sk_base)
|
| 113 |
elif api_key.startswith("pk-"):
|
| 114 |
os.environ.setdefault("OPENAI_API_BASE", pk_base)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
ROOT_DIRECTORY = Path(__file__).parent
|
| 117 |
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
|
|
@@ -128,6 +138,7 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 128 |
ns_initial = SimpleNamespace(
|
| 129 |
db=None,
|
| 130 |
qa=None,
|
|
|
|
| 131 |
ingest_done=None,
|
| 132 |
files_info=None,
|
| 133 |
files_uploaded=[],
|
|
@@ -140,7 +151,7 @@ ns = deepcopy(ns_initial)
|
|
| 140 |
|
| 141 |
|
| 142 |
def load_single_document(file_path: str | Path) -> List[Document]:
|
| 143 |
-
"""
|
| 144 |
try:
|
| 145 |
_ = Path(file_path).read_bytes()
|
| 146 |
encoding = detect(_).get("encoding")
|
|
@@ -350,6 +361,28 @@ def process_files(
|
|
| 350 |
logger.info(f"Loaded {len(documents)} document(s) ")
|
| 351 |
logger.info(f"Split into {len(texts)} chunk(s) of text")
|
| 352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
# initialize if necessary
|
| 354 |
if ns.db is None:
|
| 355 |
logger.info(f"loading {ns.model_name:}")
|
|
@@ -366,19 +399,21 @@ def process_files(
|
|
| 366 |
)
|
| 367 |
logger.info("done creating vectorstore")
|
| 368 |
|
| 369 |
-
total = ceil(len(texts) / 101)
|
| 370 |
if progress is None:
|
| 371 |
# for text in progress.tqdm(
|
| 372 |
-
for idx, text in enumerate(mit.chunked_even(texts, 101)):
|
| 373 |
logger.debug(f"-{idx + 1} of {total}")
|
| 374 |
ns.db.add_documents(documents=text)
|
| 375 |
else:
|
| 376 |
# for text in progress.tqdm(
|
| 377 |
-
for idx, text in enumerate(
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
| 382 |
logger.debug(f"{idx + 1} of {total}")
|
| 383 |
ns.db.add_documents(documents=text)
|
| 384 |
logger.debug(f" done all {total}")
|
|
@@ -394,15 +429,15 @@ def process_files(
|
|
| 394 |
# return_source_documents=True,
|
| 395 |
)
|
| 396 |
|
| 397 |
-
ns.ingest_done = True
|
| 398 |
-
_ = [
|
| 399 |
-
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
|
| 400 |
-
for doc in documents
|
| 401 |
-
]
|
| 402 |
-
ns.files_info = _
|
| 403 |
-
|
| 404 |
logger.debug(f"{ns.ingest_done=}, exit process_files")
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
|
| 408 |
def respond(message, chat_history):
|
|
@@ -445,6 +480,8 @@ def respond(message, chat_history):
|
|
| 445 |
except Exception as exc:
|
| 446 |
logger.error(exc)
|
| 447 |
bot_message = f"bummer! {exc}"
|
|
|
|
|
|
|
| 448 |
|
| 449 |
chat_history.append((message, bot_message))
|
| 450 |
|
|
@@ -571,17 +608,20 @@ def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
|
|
| 571 |
else:
|
| 572 |
model = LlamaForCausalLM.from_pretrained(model_id)
|
| 573 |
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 583 |
|
| 584 |
-
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 585 |
return local_llm
|
| 586 |
|
| 587 |
|
|
@@ -666,7 +706,9 @@ def main1():
|
|
| 666 |
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
|
| 667 |
|
| 668 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 669 |
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
|
|
|
|
| 670 |
|
| 671 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 672 |
# name = gr.Textbox(label="Name")
|
|
@@ -724,57 +766,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 724 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 725 |
process_btn.click(process_files, [], text2)
|
| 726 |
|
| 727 |
-
|
| 728 |
-
"""Gen response."""
|
| 729 |
-
logger.info(f"{ns.ingest_done=}")
|
| 730 |
-
if ns.ingest_done is None: # no files processed yet
|
| 731 |
-
bot_message = "Upload some file(s) for processing first."
|
| 732 |
-
chat_history.append((message, bot_message))
|
| 733 |
-
return "", chat_history
|
| 734 |
-
|
| 735 |
-
logger.info(f"{ns.ingest_done=}")
|
| 736 |
-
if not ns.ingest_done: # embedding database not doen yet
|
| 737 |
-
bot_message = (
|
| 738 |
-
"Waiting for ingest (embedding) to finish, "
|
| 739 |
-
f"({ns.ingest_done=})"
|
| 740 |
-
"be patient... You can switch the 'Upload files' "
|
| 741 |
-
"Tab to check"
|
| 742 |
-
)
|
| 743 |
-
chat_history.append((message, bot_message))
|
| 744 |
-
return "", chat_history
|
| 745 |
-
|
| 746 |
-
_ = """
|
| 747 |
-
if ns.qa is None: # load qa one time
|
| 748 |
-
logger.info("Loading qa, need to do just one time.")
|
| 749 |
-
ns.qa = load_qa()
|
| 750 |
-
logger.info("Done loading qa, need to do just one time.")
|
| 751 |
-
# """
|
| 752 |
-
if ns.qa is None:
|
| 753 |
-
bot_message = "Looks like the bot is not ready. Try again later..."
|
| 754 |
-
chat_history.append((message, bot_message))
|
| 755 |
-
return "", chat_history
|
| 756 |
-
|
| 757 |
-
try:
|
| 758 |
-
res = ns.qa(message)
|
| 759 |
-
answer = res.get("result")
|
| 760 |
-
docs = res.get("source_documents")
|
| 761 |
-
if docs:
|
| 762 |
-
bot_message = f"{answer}\n({docs})"
|
| 763 |
-
else:
|
| 764 |
-
bot_message = f"{answer}"
|
| 765 |
-
except Exception as exc:
|
| 766 |
-
logger.error(exc)
|
| 767 |
-
bot_message = f"bummer! {exc}"
|
| 768 |
-
|
| 769 |
-
chat_history.append((message, bot_message))
|
| 770 |
-
|
| 771 |
-
return "", chat_history
|
| 772 |
-
|
| 773 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 774 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 775 |
|
| 776 |
if __name__ == "__main__":
|
| 777 |
-
demo.queue(concurrency_count=20).launch(
|
| 778 |
|
| 779 |
_ = """
|
| 780 |
run_localgpt
|
|
|
|
| 47 |
Wall time: 1min 37s
|
| 48 |
|
| 49 |
"""
|
| 50 |
+
# pylint: disable=broad-except, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member, too-many-branches, unused-variable, too-many-arguments, global-statement
|
| 51 |
import os
|
| 52 |
import time
|
| 53 |
from copy import deepcopy
|
| 54 |
from math import ceil
|
| 55 |
from pathlib import Path
|
| 56 |
+
|
| 57 |
+
# from tempfile import _TemporaryFileWrapper
|
| 58 |
from textwrap import dedent
|
| 59 |
from types import SimpleNamespace
|
| 60 |
from typing import List
|
| 61 |
|
| 62 |
import gradio as gr
|
| 63 |
+
import httpx
|
| 64 |
import more_itertools as mit
|
| 65 |
import torch
|
| 66 |
+
|
| 67 |
+
# from about_time import about_time
|
| 68 |
from charset_normalizer import detect
|
| 69 |
from chromadb.config import Settings
|
| 70 |
|
|
|
|
| 80 |
TextLoader,
|
| 81 |
)
|
| 82 |
from langchain.embeddings import (
|
|
|
|
| 83 |
SentenceTransformerEmbeddings,
|
| 84 |
+
) # HuggingFaceInstructEmbeddings,
|
| 85 |
from langchain.llms import HuggingFacePipeline, OpenAI
|
| 86 |
from langchain.memory import ConversationBufferMemory
|
| 87 |
from langchain.text_splitter import (
|
|
|
|
| 114 |
os.environ.setdefault("OPENAI_API_BASE", sk_base)
|
| 115 |
elif api_key.startswith("pk-"):
|
| 116 |
os.environ.setdefault("OPENAI_API_BASE", pk_base)
|
| 117 |
+
# resetip
|
| 118 |
+
try:
|
| 119 |
+
url = "https://api.pawan.krd/resetip"
|
| 120 |
+
headers = {"Authorization": f"{api_key}"}
|
| 121 |
+
httpx.post(url, headers=headers)
|
| 122 |
+
except Exception as exc_:
|
| 123 |
+
logger.error(exc_)
|
| 124 |
+
raise
|
| 125 |
|
| 126 |
ROOT_DIRECTORY = Path(__file__).parent
|
| 127 |
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
|
|
|
|
| 138 |
ns_initial = SimpleNamespace(
|
| 139 |
db=None,
|
| 140 |
qa=None,
|
| 141 |
+
texts=[],
|
| 142 |
ingest_done=None,
|
| 143 |
files_info=None,
|
| 144 |
files_uploaded=[],
|
|
|
|
| 151 |
|
| 152 |
|
| 153 |
def load_single_document(file_path: str | Path) -> List[Document]:
|
| 154 |
+
"""Load a single document from a file path."""
|
| 155 |
try:
|
| 156 |
_ = Path(file_path).read_bytes()
|
| 157 |
encoding = detect(_).get("encoding")
|
|
|
|
| 361 |
logger.info(f"Loaded {len(documents)} document(s) ")
|
| 362 |
logger.info(f"Split into {len(texts)} chunk(s) of text")
|
| 363 |
|
| 364 |
+
total = ceil(len(texts) / 101)
|
| 365 |
+
ns.texts = texts
|
| 366 |
+
|
| 367 |
+
ns.ingest_done = True
|
| 368 |
+
_ = [
|
| 369 |
+
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
|
| 370 |
+
for doc in documents
|
| 371 |
+
]
|
| 372 |
+
ns.files_info = _
|
| 373 |
+
|
| 374 |
+
_ = (
|
| 375 |
+
f"done file(s): {dict(ns.files_info)}, splitted to "
|
| 376 |
+
f"{total} chunks. \n\nThe following embedding takes "
|
| 377 |
+
f"step 0-{total - 1}. (Each step lasts about 18 secs "
|
| 378 |
+
" on a free tier instance on huggingface space.)"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
return _
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def embed_files(progress=gr.Progress()):
|
| 385 |
+
"""Embded ns.files_uploaded."""
|
| 386 |
# initialize if necessary
|
| 387 |
if ns.db is None:
|
| 388 |
logger.info(f"loading {ns.model_name:}")
|
|
|
|
| 399 |
)
|
| 400 |
logger.info("done creating vectorstore")
|
| 401 |
|
| 402 |
+
total = ceil(len(ns.texts) / 101)
|
| 403 |
if progress is None:
|
| 404 |
# for text in progress.tqdm(
|
| 405 |
+
for idx, text in enumerate(mit.chunked_even(ns.texts, 101)):
|
| 406 |
logger.debug(f"-{idx + 1} of {total}")
|
| 407 |
ns.db.add_documents(documents=text)
|
| 408 |
else:
|
| 409 |
# for text in progress.tqdm(
|
| 410 |
+
for idx, text in enumerate(
|
| 411 |
+
progress.tqdm(
|
| 412 |
+
mit.chunked_even(ns.texts, 101),
|
| 413 |
+
total=total,
|
| 414 |
+
desc="Processing docs",
|
| 415 |
+
)
|
| 416 |
+
):
|
| 417 |
logger.debug(f"{idx + 1} of {total}")
|
| 418 |
ns.db.add_documents(documents=text)
|
| 419 |
logger.debug(f" done all {total}")
|
|
|
|
| 429 |
# return_source_documents=True,
|
| 430 |
)
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
logger.debug(f"{ns.ingest_done=}, exit process_files")
|
| 433 |
+
|
| 434 |
+
_ = (
|
| 435 |
+
f"Done {total} chunks. You can now "
|
| 436 |
+
"switch to Query Docs Tab to chat. "
|
| 437 |
+
"You can chat in a language you prefer, "
|
| 438 |
+
"independent of the document language. Have fun."
|
| 439 |
+
)
|
| 440 |
+
return _
|
| 441 |
|
| 442 |
|
| 443 |
def respond(message, chat_history):
|
|
|
|
| 480 |
except Exception as exc:
|
| 481 |
logger.error(exc)
|
| 482 |
bot_message = f"bummer! {exc}"
|
| 483 |
+
if "empty" in str(exc):
|
| 484 |
+
bot_message = f"{bot_message} (probably invalid apikey)"
|
| 485 |
|
| 486 |
chat_history.append((message, bot_message))
|
| 487 |
|
|
|
|
| 608 |
else:
|
| 609 |
model = LlamaForCausalLM.from_pretrained(model_id)
|
| 610 |
|
| 611 |
+
local_llm = None
|
| 612 |
+
if model is not None: # to please pyright
|
| 613 |
+
pipe = pipeline(
|
| 614 |
+
"text-generation",
|
| 615 |
+
model=model, # type: ignore
|
| 616 |
+
tokenizer=tokenizer,
|
| 617 |
+
max_length=2048,
|
| 618 |
+
temperature=0,
|
| 619 |
+
top_p=0.95,
|
| 620 |
+
repetition_penalty=1.15,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 624 |
|
|
|
|
| 625 |
return local_llm
|
| 626 |
|
| 627 |
|
|
|
|
| 706 |
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
|
| 707 |
|
| 708 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 709 |
+
openai_api_base = os.getenv("OPENAI_API_BASE")
|
| 710 |
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
|
| 711 |
+
logger.info(f"openai_api_base: {openai_api_base}")
|
| 712 |
|
| 713 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 714 |
# name = gr.Textbox(label="Name")
|
|
|
|
| 766 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 767 |
process_btn.click(process_files, [], text2)
|
| 768 |
|
| 769 |
+
# Query docs TAB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 771 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 772 |
|
| 773 |
if __name__ == "__main__":
|
| 774 |
+
demo.queue(concurrency_count=20).launch()
|
| 775 |
|
| 776 |
_ = """
|
| 777 |
run_localgpt
|
main.py
CHANGED
|
@@ -2,13 +2,43 @@
|
|
| 2 |
# pylint: disable=invalid-name, unused-import, broad-except,
|
| 3 |
from copy import deepcopy
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
-
from app import ingest, ns, ns_initial, process_files, upload_files, respond
|
| 7 |
-
from load_api_key import load_api_key, pk_base, sk_base
|
| 8 |
from loguru import logger
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 11 |
-
with gr.Tab("Upload files"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Upload files and generate vectorstore
|
| 13 |
with gr.Row():
|
| 14 |
file_output = gr.File()
|
|
@@ -20,12 +50,15 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 20 |
file_count="multiple",
|
| 21 |
)
|
| 22 |
with gr.Row():
|
| 23 |
-
text2 = gr.Textbox("
|
| 24 |
-
process_btn = gr.Button("Click to
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
reset_btn = gr.Button("Reset everything", visible=False)
|
| 27 |
|
| 28 |
-
with gr.Tab("Query docs"):
|
| 29 |
# interactive chat
|
| 30 |
chatbot = gr.Chatbot()
|
| 31 |
msg = gr.Textbox(label="Query")
|
|
@@ -38,11 +71,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 38 |
globals().update(**{"ns": deepcopy(ns_initial)})
|
| 39 |
return f"reset done: ns={ns}"
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 44 |
process_btn.click(process_files, [], text2)
|
|
|
|
|
|
|
| 45 |
|
|
|
|
| 46 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 47 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 48 |
|
|
|
|
| 2 |
# pylint: disable=invalid-name, unused-import, broad-except,
|
| 3 |
from copy import deepcopy
|
| 4 |
|
| 5 |
+
from textwrap import dedent
|
| 6 |
+
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
| 8 |
from loguru import logger
|
| 9 |
|
| 10 |
+
from app import (
|
| 11 |
+
embed_files,
|
| 12 |
+
ingest,
|
| 13 |
+
ns,
|
| 14 |
+
ns_initial,
|
| 15 |
+
process_files,
|
| 16 |
+
respond,
|
| 17 |
+
upload_files,
|
| 18 |
+
)
|
| 19 |
+
from load_api_key import load_api_key, pk_base, sk_base
|
| 20 |
+
|
| 21 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 22 |
+
with gr.Tab("Upload files"): # Tab1
|
| 23 |
+
with gr.Accordion("Info", open=False):
|
| 24 |
+
_ = """
|
| 25 |
+
# multilingual dokugpt/多语dokugpt
|
| 26 |
+
|
| 27 |
+
和你的文件对话: 可用中文向外语文件提问或用外语向中文文件提问
|
| 28 |
+
|
| 29 |
+
Talk to your docs (.pdf, .docx, .epub, .txt .md and
|
| 30 |
+
other text docs): You can ask questions in a language you prefer, independent of the document language.
|
| 31 |
+
|
| 32 |
+
It
|
| 33 |
+
takes quite a while to ingest docs (5-30 min. depending
|
| 34 |
+
on net, RAM, CPU etc.).
|
| 35 |
+
|
| 36 |
+
Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])
|
| 37 |
+
|
| 38 |
+
Homepage: https://huggingface.co/spaces/mikeee/localgpt
|
| 39 |
+
"""
|
| 40 |
+
gr.Markdown(dedent(_))
|
| 41 |
+
|
| 42 |
# Upload files and generate vectorstore
|
| 43 |
with gr.Row():
|
| 44 |
file_output = gr.File()
|
|
|
|
| 50 |
file_count="multiple",
|
| 51 |
)
|
| 52 |
with gr.Row():
|
| 53 |
+
text2 = gr.Textbox("Process docs")
|
| 54 |
+
process_btn = gr.Button("Click to process")
|
| 55 |
+
with gr.Row():
|
| 56 |
+
text_embed = gr.Textbox("Generate embeddings")
|
| 57 |
+
embed_btn = gr.Button("Click to embed")
|
| 58 |
|
| 59 |
reset_btn = gr.Button("Reset everything", visible=False)
|
| 60 |
|
| 61 |
+
with gr.Tab("Query docs"): # Tab1
|
| 62 |
# interactive chat
|
| 63 |
chatbot = gr.Chatbot()
|
| 64 |
msg = gr.Textbox(label="Query")
|
|
|
|
| 71 |
globals().update(**{"ns": deepcopy(ns_initial)})
|
| 72 |
return f"reset done: ns={ns}"
|
| 73 |
|
| 74 |
+
# Tab1
|
|
|
|
| 75 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 76 |
process_btn.click(process_files, [], text2)
|
| 77 |
+
embed_btn.click(embed_files, [], text_embed)
|
| 78 |
+
reset_btn.click(reset_all, [], text2)
|
| 79 |
|
| 80 |
+
# Tab2
|
| 81 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 82 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 83 |
|
requirements-dev.txt
CHANGED
|
@@ -1,2 +1,6 @@
|
|
| 1 |
ipython
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
ipython
|
| 2 |
+
isort
|
| 3 |
+
black
|
| 4 |
+
pydocstyle
|
| 5 |
+
pyright
|
| 6 |
+
pylint
|
run-main.sh
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
nodemon -w app.py -w main.py -x python main.py
|