Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
·
f1dfff2
1
Parent(s):
4f331cc
Update epub files
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
|
|
| 4 |
|
| 5 |
https://python.langchain.com/en/latest/getting_started/tutorials.html
|
| 6 |
"""
|
| 7 |
-
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long
|
| 8 |
import os
|
| 9 |
import time
|
| 10 |
from pathlib import Path
|
|
@@ -13,11 +13,15 @@ from types import SimpleNamespace
|
|
| 13 |
import gradio as gr
|
| 14 |
from charset_normalizer import detect
|
| 15 |
from chromadb.config import Settings
|
|
|
|
| 16 |
from langchain.chains import RetrievalQA
|
| 17 |
from langchain.docstore.document import Document
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
|
| 23 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
@@ -36,7 +40,6 @@ from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
|
|
| 36 |
# import click
|
| 37 |
# from typing import List
|
| 38 |
|
| 39 |
-
|
| 40 |
# from utils import xlxs_to_csv
|
| 41 |
|
| 42 |
# load possible env such as OPENAI_API_KEY
|
|
@@ -87,15 +90,26 @@ def load_single_document(file_path: str | Path) -> Document:
|
|
| 87 |
loader = PDFMinerLoader(file_path)
|
| 88 |
elif file_path.endswith(".csv"):
|
| 89 |
loader = CSVLoader(file_path)
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
else:
|
| 92 |
if encoding is None:
|
| 93 |
logger.warning(
|
| 94 |
f" {file_path}'s encoding is None "
|
| 95 |
"Likely binary files, return empty str "
|
| 96 |
)
|
| 97 |
-
return ""
|
| 98 |
-
|
| 99 |
try:
|
| 100 |
loader = TextLoader(file_path)
|
| 101 |
except Exception as exc:
|
|
@@ -319,6 +333,9 @@ def main():
|
|
| 319 |
|
| 320 |
def respond(message, chat_history):
|
| 321 |
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
|
|
|
|
|
|
|
|
|
|
| 322 |
res = ns.qa(message)
|
| 323 |
answer, docs = res["result"], res["source_documents"]
|
| 324 |
bot_message = f"{answer} ({docs})"
|
|
|
|
| 4 |
|
| 5 |
https://python.langchain.com/en/latest/getting_started/tutorials.html
|
| 6 |
"""
|
| 7 |
+
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements
|
| 8 |
import os
|
| 9 |
import time
|
| 10 |
from pathlib import Path
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
from charset_normalizer import detect
|
| 15 |
from chromadb.config import Settings
|
| 16 |
+
from epub2txt import epub2txt
|
| 17 |
from langchain.chains import RetrievalQA
|
| 18 |
from langchain.docstore.document import Document
|
| 19 |
+
from langchain.document_loaders import (
|
| 20 |
+
CSVLoader,
|
| 21 |
+
Docx2txtLoader,
|
| 22 |
+
PDFMinerLoader,
|
| 23 |
+
TextLoader,
|
| 24 |
+
)
|
| 25 |
|
| 26 |
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
|
| 27 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
|
| 40 |
# import click
|
| 41 |
# from typing import List
|
| 42 |
|
|
|
|
| 43 |
# from utils import xlxs_to_csv
|
| 44 |
|
| 45 |
# load possible env such as OPENAI_API_KEY
|
|
|
|
| 90 |
loader = PDFMinerLoader(file_path)
|
| 91 |
elif file_path.endswith(".csv"):
|
| 92 |
loader = CSVLoader(file_path)
|
| 93 |
+
elif Path(file_path).suffix in [".docx"]:
|
| 94 |
+
try:
|
| 95 |
+
loader = Docx2txtLoader(file_path)
|
| 96 |
+
except Exception as exc:
|
| 97 |
+
logger.error(f" {file_path} errors: {exc}")
|
| 98 |
+
return Document(page_content="", metadata={"source": file_path})
|
| 99 |
+
elif Path(file_path).suffix in [".epub"]: # for epub? epub2txt unstructured
|
| 100 |
+
try:
|
| 101 |
+
_ = epub2txt(file_path)
|
| 102 |
+
except Exception as exc:
|
| 103 |
+
logger.error(f" {file_path} errors: {exc}")
|
| 104 |
+
return Document(page_content="", metadata={"source": file_path})
|
| 105 |
+
return Document(page_content=_, metadata={"source": file_path})
|
| 106 |
else:
|
| 107 |
if encoding is None:
|
| 108 |
logger.warning(
|
| 109 |
f" {file_path}'s encoding is None "
|
| 110 |
"Likely binary files, return empty str "
|
| 111 |
)
|
| 112 |
+
return Document(page_content="", metadata={"source": file_path})
|
|
|
|
| 113 |
try:
|
| 114 |
loader = TextLoader(file_path)
|
| 115 |
except Exception as exc:
|
|
|
|
| 333 |
|
| 334 |
def respond(message, chat_history):
|
| 335 |
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
|
| 336 |
+
if ns.qa is None: # no files processed yet
|
| 337 |
+
return "Provide some file(s) for processsing first.", chat_history
|
| 338 |
+
|
| 339 |
res = ns.qa(message)
|
| 340 |
answer, docs = res["result"], res["source_documents"]
|
| 341 |
bot_message = f"{answer} ({docs})"
|