Spaces:
Runtime error
Runtime error
Upload 12 files
Browse files- app.py +227 -0
- fine-tuned-model/README.md +202 -0
- fine-tuned-model/adapter_config.json +34 -0
- fine-tuned-model/adapter_model.safetensors +3 -0
- fine-tuned-model/added_tokens.json +40 -0
- fine-tuned-model/merges.txt +0 -0
- fine-tuned-model/special_tokens_map.json +24 -0
- fine-tuned-model/tokenizer.json +0 -0
- fine-tuned-model/tokenizer_config.json +326 -0
- fine-tuned-model/vocab.json +0 -0
- requirements.txt +12 -0
- train.py +380 -0
app.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 3 |
+
import torch
|
| 4 |
+
from rich.console import Console
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
# Initialize rich console for better logging
|
| 8 |
+
console = Console()
|
| 9 |
+
|
| 10 |
+
# Load the model and tokenizer with the same configuration as training
|
| 11 |
+
console.print("[bold green]Loading model and tokenizer...[/bold green]")
|
| 12 |
+
|
| 13 |
+
# Configure 4-bit quantization with memory optimizations
|
| 14 |
+
quantization_config = BitsAndBytesConfig(
|
| 15 |
+
load_in_4bit=True,
|
| 16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 17 |
+
bnb_4bit_use_double_quant=True,
|
| 18 |
+
bnb_4bit_quant_type="nf4",
|
| 19 |
+
bnb_4bit_quant_storage=torch.float16,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load model with quantization and memory optimizations
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"./fine-tuned-model",
|
| 25 |
+
quantization_config=quantization_config,
|
| 26 |
+
device_map="auto",
|
| 27 |
+
trust_remote_code=True,
|
| 28 |
+
torch_dtype=torch.float16,
|
| 29 |
+
)
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("./fine-tuned-model")
|
| 31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 32 |
+
tokenizer.padding_side = 'left'
|
| 33 |
+
|
| 34 |
+
def generate_response(
|
| 35 |
+
prompt,
|
| 36 |
+
max_length=128, # Match training max_length
|
| 37 |
+
temperature=0.7,
|
| 38 |
+
top_p=0.9,
|
| 39 |
+
num_generations=2, # Match training num_generations
|
| 40 |
+
repetition_penalty=1.1,
|
| 41 |
+
do_sample=True,
|
| 42 |
+
):
|
| 43 |
+
try:
|
| 44 |
+
# Get the device of the model
|
| 45 |
+
device = next(model.parameters()).device
|
| 46 |
+
|
| 47 |
+
# Tokenize the input
|
| 48 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 49 |
+
|
| 50 |
+
# Move inputs to the same device as the model
|
| 51 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 52 |
+
|
| 53 |
+
# Generate response
|
| 54 |
+
with torch.no_grad(): # Disable gradient computation
|
| 55 |
+
outputs = model.generate(
|
| 56 |
+
**inputs,
|
| 57 |
+
max_new_tokens=max_length,
|
| 58 |
+
do_sample=do_sample,
|
| 59 |
+
temperature=temperature,
|
| 60 |
+
top_p=top_p,
|
| 61 |
+
num_return_sequences=num_generations,
|
| 62 |
+
repetition_penalty=repetition_penalty,
|
| 63 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 64 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Decode and return the responses
|
| 68 |
+
responses = []
|
| 69 |
+
for output in outputs:
|
| 70 |
+
response = tokenizer.decode(output, skip_special_tokens=True)
|
| 71 |
+
responses.append(response)
|
| 72 |
+
|
| 73 |
+
return "\n\n---\n\n".join(responses)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
console.print(f"[bold red]Error during generation: {str(e)}[/bold red]")
|
| 76 |
+
return f"Error: {str(e)}"
|
| 77 |
+
|
| 78 |
+
# Create custom CSS for better UI
|
| 79 |
+
custom_css = """
|
| 80 |
+
.gradio-container {
|
| 81 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 82 |
+
}
|
| 83 |
+
.container {
|
| 84 |
+
max-width: 800px;
|
| 85 |
+
margin: auto;
|
| 86 |
+
padding: 20px;
|
| 87 |
+
}
|
| 88 |
+
.title {
|
| 89 |
+
text-align: center;
|
| 90 |
+
color: #2c3e50;
|
| 91 |
+
margin-bottom: 20px;
|
| 92 |
+
}
|
| 93 |
+
.description {
|
| 94 |
+
color: #34495e;
|
| 95 |
+
line-height: 1.6;
|
| 96 |
+
margin-bottom: 20px;
|
| 97 |
+
}
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
# Create the Gradio interface with enhanced UI
|
| 101 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 102 |
+
gr.Markdown(
|
| 103 |
+
"""
|
| 104 |
+
# Phi-2 Fine-tuned with GRPO and qLoRA
|
| 105 |
+
This model has been fine-tuned using GRPO (Generative Reward-Penalized Optimization) and compressed using qLoRA.
|
| 106 |
+
Try it out with different prompts and generation parameters!
|
| 107 |
+
""",
|
| 108 |
+
elem_classes="title"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column(scale=2):
|
| 113 |
+
prompt = gr.Textbox(
|
| 114 |
+
label="Prompt",
|
| 115 |
+
placeholder="Enter your prompt here...",
|
| 116 |
+
lines=3,
|
| 117 |
+
show_label=True,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
with gr.Row():
|
| 121 |
+
with gr.Column():
|
| 122 |
+
max_length = gr.Slider(
|
| 123 |
+
minimum=32,
|
| 124 |
+
maximum=256,
|
| 125 |
+
value=128,
|
| 126 |
+
step=32,
|
| 127 |
+
label="Max Length",
|
| 128 |
+
info="Maximum number of tokens to generate"
|
| 129 |
+
)
|
| 130 |
+
temperature = gr.Slider(
|
| 131 |
+
minimum=0.1,
|
| 132 |
+
maximum=1.0,
|
| 133 |
+
value=0.7,
|
| 134 |
+
step=0.1,
|
| 135 |
+
label="Temperature",
|
| 136 |
+
info="Higher values make output more random, lower values more deterministic"
|
| 137 |
+
)
|
| 138 |
+
with gr.Column():
|
| 139 |
+
top_p = gr.Slider(
|
| 140 |
+
minimum=0.1,
|
| 141 |
+
maximum=1.0,
|
| 142 |
+
value=0.9,
|
| 143 |
+
step=0.1,
|
| 144 |
+
label="Top-p",
|
| 145 |
+
info="Nucleus sampling parameter"
|
| 146 |
+
)
|
| 147 |
+
num_generations = gr.Slider(
|
| 148 |
+
minimum=1,
|
| 149 |
+
maximum=4,
|
| 150 |
+
value=2,
|
| 151 |
+
step=1,
|
| 152 |
+
label="Number of Generations",
|
| 153 |
+
info="Number of different responses to generate"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column():
|
| 158 |
+
repetition_penalty = gr.Slider(
|
| 159 |
+
minimum=1.0,
|
| 160 |
+
maximum=2.0,
|
| 161 |
+
value=1.1,
|
| 162 |
+
step=0.1,
|
| 163 |
+
label="Repetition Penalty",
|
| 164 |
+
info="Higher values prevent repetition"
|
| 165 |
+
)
|
| 166 |
+
with gr.Column():
|
| 167 |
+
do_sample = gr.Checkbox(
|
| 168 |
+
value=True,
|
| 169 |
+
label="Enable Sampling",
|
| 170 |
+
info="Enable/disable sampling for deterministic output"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 174 |
+
|
| 175 |
+
with gr.Column(scale=3):
|
| 176 |
+
output = gr.Textbox(
|
| 177 |
+
label="Generated Response(s)",
|
| 178 |
+
lines=10,
|
| 179 |
+
show_label=True,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
gr.Markdown(
|
| 183 |
+
"""
|
| 184 |
+
### Example Prompts
|
| 185 |
+
Try these example prompts to test the model:
|
| 186 |
+
|
| 187 |
+
1. **Technical Question**: "What is machine learning?"
|
| 188 |
+
2. **Creative Writing**: "Write a short story about a robot learning to paint."
|
| 189 |
+
3. **Technical Explanation**: "Explain quantum computing in simple terms."
|
| 190 |
+
4. **Creative Writing**: "Write a poem about artificial intelligence."
|
| 191 |
+
""",
|
| 192 |
+
elem_classes="description"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Add examples
|
| 196 |
+
gr.Examples(
|
| 197 |
+
examples=[
|
| 198 |
+
["What is machine learning?"],
|
| 199 |
+
["Write a short story about a robot learning to paint."],
|
| 200 |
+
["Explain quantum computing in simple terms."],
|
| 201 |
+
["Write a poem about artificial intelligence."]
|
| 202 |
+
],
|
| 203 |
+
inputs=prompt
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Connect the interface
|
| 207 |
+
generate_btn.click(
|
| 208 |
+
fn=generate_response,
|
| 209 |
+
inputs=[
|
| 210 |
+
prompt,
|
| 211 |
+
max_length,
|
| 212 |
+
temperature,
|
| 213 |
+
top_p,
|
| 214 |
+
num_generations,
|
| 215 |
+
repetition_penalty,
|
| 216 |
+
do_sample
|
| 217 |
+
],
|
| 218 |
+
outputs=output
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
if __name__ == "__main__":
|
| 222 |
+
console.print("[bold green]Starting Gradio interface...[/bold green]")
|
| 223 |
+
demo.launch(
|
| 224 |
+
server_name="0.0.0.0",
|
| 225 |
+
server_port=7860,
|
| 226 |
+
share=True # Enable sharing for HuggingFace Spaces
|
| 227 |
+
)
|
fine-tuned-model/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/phi-2
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.14.0
|
fine-tuned-model/adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/phi-2",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"eva_config": null,
|
| 7 |
+
"exclude_modules": null,
|
| 8 |
+
"fan_in_fan_out": false,
|
| 9 |
+
"inference_mode": true,
|
| 10 |
+
"init_lora_weights": true,
|
| 11 |
+
"layer_replication": null,
|
| 12 |
+
"layers_pattern": null,
|
| 13 |
+
"layers_to_transform": null,
|
| 14 |
+
"loftq_config": {},
|
| 15 |
+
"lora_alpha": 32,
|
| 16 |
+
"lora_bias": false,
|
| 17 |
+
"lora_dropout": 0.05,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 16,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"k_proj",
|
| 29 |
+
"o_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
fine-tuned-model/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1491777fce601097323585d69288bc5376d647628f0673c54196edaf47692f9
|
| 3 |
+
size 31483040
|
fine-tuned-model/added_tokens.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"\t\t": 50294,
|
| 3 |
+
"\t\t\t": 50293,
|
| 4 |
+
"\t\t\t\t": 50292,
|
| 5 |
+
"\t\t\t\t\t": 50291,
|
| 6 |
+
"\t\t\t\t\t\t": 50290,
|
| 7 |
+
"\t\t\t\t\t\t\t": 50289,
|
| 8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
| 9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
| 10 |
+
" ": 50286,
|
| 11 |
+
" ": 50285,
|
| 12 |
+
" ": 50284,
|
| 13 |
+
" ": 50283,
|
| 14 |
+
" ": 50282,
|
| 15 |
+
" ": 50281,
|
| 16 |
+
" ": 50280,
|
| 17 |
+
" ": 50279,
|
| 18 |
+
" ": 50278,
|
| 19 |
+
" ": 50277,
|
| 20 |
+
" ": 50276,
|
| 21 |
+
" ": 50275,
|
| 22 |
+
" ": 50274,
|
| 23 |
+
" ": 50273,
|
| 24 |
+
" ": 50272,
|
| 25 |
+
" ": 50271,
|
| 26 |
+
" ": 50270,
|
| 27 |
+
" ": 50269,
|
| 28 |
+
" ": 50268,
|
| 29 |
+
" ": 50267,
|
| 30 |
+
" ": 50266,
|
| 31 |
+
" ": 50265,
|
| 32 |
+
" ": 50264,
|
| 33 |
+
" ": 50263,
|
| 34 |
+
" ": 50262,
|
| 35 |
+
" ": 50261,
|
| 36 |
+
" ": 50260,
|
| 37 |
+
" ": 50259,
|
| 38 |
+
" ": 50258,
|
| 39 |
+
" ": 50257
|
| 40 |
+
}
|
fine-tuned-model/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
fine-tuned-model/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
fine-tuned-model/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
fine-tuned-model/tokenizer_config.json
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"50256": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"50257": {
|
| 13 |
+
"content": " ",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": false
|
| 19 |
+
},
|
| 20 |
+
"50258": {
|
| 21 |
+
"content": " ",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": false
|
| 27 |
+
},
|
| 28 |
+
"50259": {
|
| 29 |
+
"content": " ",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": false
|
| 35 |
+
},
|
| 36 |
+
"50260": {
|
| 37 |
+
"content": " ",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": true,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": false
|
| 43 |
+
},
|
| 44 |
+
"50261": {
|
| 45 |
+
"content": " ",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": false
|
| 51 |
+
},
|
| 52 |
+
"50262": {
|
| 53 |
+
"content": " ",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": true,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": false
|
| 59 |
+
},
|
| 60 |
+
"50263": {
|
| 61 |
+
"content": " ",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": true,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": false
|
| 67 |
+
},
|
| 68 |
+
"50264": {
|
| 69 |
+
"content": " ",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": true,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": false
|
| 75 |
+
},
|
| 76 |
+
"50265": {
|
| 77 |
+
"content": " ",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": true,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": false
|
| 83 |
+
},
|
| 84 |
+
"50266": {
|
| 85 |
+
"content": " ",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": true,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": false
|
| 91 |
+
},
|
| 92 |
+
"50267": {
|
| 93 |
+
"content": " ",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": true,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": false
|
| 99 |
+
},
|
| 100 |
+
"50268": {
|
| 101 |
+
"content": " ",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": true,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": false
|
| 107 |
+
},
|
| 108 |
+
"50269": {
|
| 109 |
+
"content": " ",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": true,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": false
|
| 115 |
+
},
|
| 116 |
+
"50270": {
|
| 117 |
+
"content": " ",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": true,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": false
|
| 123 |
+
},
|
| 124 |
+
"50271": {
|
| 125 |
+
"content": " ",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": true,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": false
|
| 131 |
+
},
|
| 132 |
+
"50272": {
|
| 133 |
+
"content": " ",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": true,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": false
|
| 139 |
+
},
|
| 140 |
+
"50273": {
|
| 141 |
+
"content": " ",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": true,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": false
|
| 147 |
+
},
|
| 148 |
+
"50274": {
|
| 149 |
+
"content": " ",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": true,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": false
|
| 155 |
+
},
|
| 156 |
+
"50275": {
|
| 157 |
+
"content": " ",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": true,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": false
|
| 163 |
+
},
|
| 164 |
+
"50276": {
|
| 165 |
+
"content": " ",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": true,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": false
|
| 171 |
+
},
|
| 172 |
+
"50277": {
|
| 173 |
+
"content": " ",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": true,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": false
|
| 179 |
+
},
|
| 180 |
+
"50278": {
|
| 181 |
+
"content": " ",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": true,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": false
|
| 187 |
+
},
|
| 188 |
+
"50279": {
|
| 189 |
+
"content": " ",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": true,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": false
|
| 195 |
+
},
|
| 196 |
+
"50280": {
|
| 197 |
+
"content": " ",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": true,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": false
|
| 203 |
+
},
|
| 204 |
+
"50281": {
|
| 205 |
+
"content": " ",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": true,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": false
|
| 211 |
+
},
|
| 212 |
+
"50282": {
|
| 213 |
+
"content": " ",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": true,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": false
|
| 219 |
+
},
|
| 220 |
+
"50283": {
|
| 221 |
+
"content": " ",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": true,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": false
|
| 227 |
+
},
|
| 228 |
+
"50284": {
|
| 229 |
+
"content": " ",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": true,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": false
|
| 235 |
+
},
|
| 236 |
+
"50285": {
|
| 237 |
+
"content": " ",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": true,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": false
|
| 243 |
+
},
|
| 244 |
+
"50286": {
|
| 245 |
+
"content": " ",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": true,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": false
|
| 251 |
+
},
|
| 252 |
+
"50287": {
|
| 253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": true,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": false
|
| 259 |
+
},
|
| 260 |
+
"50288": {
|
| 261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": true,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": false
|
| 267 |
+
},
|
| 268 |
+
"50289": {
|
| 269 |
+
"content": "\t\t\t\t\t\t\t",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": true,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": false
|
| 275 |
+
},
|
| 276 |
+
"50290": {
|
| 277 |
+
"content": "\t\t\t\t\t\t",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": true,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": false
|
| 283 |
+
},
|
| 284 |
+
"50291": {
|
| 285 |
+
"content": "\t\t\t\t\t",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": true,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": false
|
| 291 |
+
},
|
| 292 |
+
"50292": {
|
| 293 |
+
"content": "\t\t\t\t",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": true,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": false
|
| 299 |
+
},
|
| 300 |
+
"50293": {
|
| 301 |
+
"content": "\t\t\t",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": true,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": false
|
| 307 |
+
},
|
| 308 |
+
"50294": {
|
| 309 |
+
"content": "\t\t",
|
| 310 |
+
"lstrip": false,
|
| 311 |
+
"normalized": true,
|
| 312 |
+
"rstrip": false,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": false
|
| 315 |
+
}
|
| 316 |
+
},
|
| 317 |
+
"bos_token": "<|endoftext|>",
|
| 318 |
+
"clean_up_tokenization_spaces": true,
|
| 319 |
+
"eos_token": "<|endoftext|>",
|
| 320 |
+
"extra_special_tokens": {},
|
| 321 |
+
"model_max_length": 2048,
|
| 322 |
+
"pad_token": "<|endoftext|>",
|
| 323 |
+
"return_token_type_ids": false,
|
| 324 |
+
"tokenizer_class": "CodeGenTokenizer",
|
| 325 |
+
"unk_token": "<|endoftext|>"
|
| 326 |
+
}
|
fine-tuned-model/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
transformers>=4.30.0
|
| 3 |
+
datasets>=2.12.0
|
| 4 |
+
accelerate>=0.20.0
|
| 5 |
+
bitsandbytes>=0.41.0
|
| 6 |
+
peft>=0.4.0
|
| 7 |
+
pytorch-lightning>=2.0.0
|
| 8 |
+
gradio>=3.40.0
|
| 9 |
+
wandb>=0.15.0
|
| 10 |
+
rich>=13.0.0
|
| 11 |
+
sentencepiece>=0.1.99
|
| 12 |
+
protobuf>=4.23.0
|
train.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import pytorch_lightning as pl
|
| 4 |
+
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
| 5 |
+
from pytorch_lightning.loggers import WandbLogger
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from transformers import (
|
| 8 |
+
AutoModelForCausalLM,
|
| 9 |
+
AutoTokenizer,
|
| 10 |
+
get_linear_schedule_with_warmup,
|
| 11 |
+
BitsAndBytesConfig,
|
| 12 |
+
TrainingArguments,
|
| 13 |
+
)
|
| 14 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 15 |
+
from rich.console import Console
|
| 16 |
+
from torch.utils.data import Dataset, DataLoader
|
| 17 |
+
|
| 18 |
+
# Enable Tensor Core optimization for RTX GPUs
|
| 19 |
+
torch.set_float32_matmul_precision('medium')
|
| 20 |
+
|
| 21 |
+
# Initialize rich console for better logging
|
| 22 |
+
console = Console()
|
| 23 |
+
|
| 24 |
+
class TextDataset(Dataset):
|
| 25 |
+
def __init__(self, dataset, tokenizer, max_length=512):
|
| 26 |
+
self.dataset = dataset
|
| 27 |
+
self.tokenizer = tokenizer
|
| 28 |
+
self.max_length = max_length
|
| 29 |
+
|
| 30 |
+
# Ensure tokenizer has a padding token
|
| 31 |
+
if self.tokenizer.pad_token is None:
|
| 32 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 33 |
+
if self.tokenizer.pad_token is None:
|
| 34 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 35 |
+
|
| 36 |
+
def __len__(self):
|
| 37 |
+
return len(self.dataset)
|
| 38 |
+
|
| 39 |
+
def __getitem__(self, idx):
|
| 40 |
+
item = self.dataset[idx]
|
| 41 |
+
# Combine instruction and input if they exist
|
| 42 |
+
prompt = item.get("instruction", "")
|
| 43 |
+
if item.get("input"):
|
| 44 |
+
prompt += "\n" + item["input"]
|
| 45 |
+
|
| 46 |
+
# Tokenize the prompt
|
| 47 |
+
encoding = self.tokenizer(
|
| 48 |
+
prompt,
|
| 49 |
+
max_length=self.max_length,
|
| 50 |
+
padding="max_length",
|
| 51 |
+
truncation=True,
|
| 52 |
+
return_tensors="pt"
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
return {
|
| 56 |
+
"input_ids": encoding["input_ids"].squeeze(),
|
| 57 |
+
"attention_mask": encoding["attention_mask"].squeeze(),
|
| 58 |
+
"prompt": prompt
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
class GRPOModel(pl.LightningModule):
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
model_name="microsoft/phi-2",
|
| 65 |
+
learning_rate=2e-5,
|
| 66 |
+
num_train_epochs=3,
|
| 67 |
+
warmup_steps=100,
|
| 68 |
+
batch_size=2,
|
| 69 |
+
max_length=128,
|
| 70 |
+
beta=0.04,
|
| 71 |
+
num_generations=2,
|
| 72 |
+
train_dataset=None,
|
| 73 |
+
):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.save_hyperparameters()
|
| 76 |
+
|
| 77 |
+
# Store train dataset
|
| 78 |
+
self.train_dataset = train_dataset
|
| 79 |
+
|
| 80 |
+
# Configure 4-bit quantization with memory optimizations
|
| 81 |
+
quantization_config = BitsAndBytesConfig(
|
| 82 |
+
load_in_4bit=True,
|
| 83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 84 |
+
bnb_4bit_use_double_quant=True,
|
| 85 |
+
bnb_4bit_quant_type="nf4",
|
| 86 |
+
bnb_4bit_quant_storage=torch.float16,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Load model with quantization and memory optimizations
|
| 90 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
quantization_config=quantization_config,
|
| 93 |
+
device_map="auto",
|
| 94 |
+
trust_remote_code=True,
|
| 95 |
+
torch_dtype=torch.float16,
|
| 96 |
+
)
|
| 97 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 98 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 99 |
+
self.tokenizer.padding_side = 'left'
|
| 100 |
+
|
| 101 |
+
# Prepare model for training
|
| 102 |
+
self.model = prepare_model_for_kbit_training(self.model)
|
| 103 |
+
|
| 104 |
+
# LoRA configuration
|
| 105 |
+
lora_config = LoraConfig(
|
| 106 |
+
r=16,
|
| 107 |
+
lora_alpha=32,
|
| 108 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 109 |
+
lora_dropout=0.05,
|
| 110 |
+
bias="none",
|
| 111 |
+
task_type="CAUSAL_LM"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
self.model = get_peft_model(self.model, lora_config)
|
| 115 |
+
|
| 116 |
+
# Store model name for reference model
|
| 117 |
+
self.model_name = model_name
|
| 118 |
+
self.ref_model = None
|
| 119 |
+
|
| 120 |
+
def setup(self, stage=None):
|
| 121 |
+
# Move model to the correct device after initialization
|
| 122 |
+
if stage == "fit":
|
| 123 |
+
self.model = self.model.to(self.device)
|
| 124 |
+
|
| 125 |
+
def get_reference_model(self):
|
| 126 |
+
if self.ref_model is None:
|
| 127 |
+
# Load reference model with quantization
|
| 128 |
+
quantization_config = BitsAndBytesConfig(
|
| 129 |
+
load_in_4bit=True,
|
| 130 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 131 |
+
bnb_4bit_use_double_quant=True,
|
| 132 |
+
bnb_4bit_quant_type="nf4",
|
| 133 |
+
)
|
| 134 |
+
self.ref_model = AutoModelForCausalLM.from_pretrained(
|
| 135 |
+
self.model_name,
|
| 136 |
+
quantization_config=quantization_config,
|
| 137 |
+
device_map=None,
|
| 138 |
+
trust_remote_code=True,
|
| 139 |
+
)
|
| 140 |
+
self.ref_model.eval()
|
| 141 |
+
self.ref_model = self.ref_model.to(self.device)
|
| 142 |
+
return self.ref_model
|
| 143 |
+
|
| 144 |
+
def reward_function(self, completions):
|
| 145 |
+
rewards = []
|
| 146 |
+
for completion in completions:
|
| 147 |
+
# Reward based on length (normalized)
|
| 148 |
+
length_reward = len(completion.split()) / 100
|
| 149 |
+
|
| 150 |
+
# Reward based on diversity (unique words)
|
| 151 |
+
unique_words = len(set(completion.lower().split()))
|
| 152 |
+
diversity_reward = unique_words / len(completion.split())
|
| 153 |
+
|
| 154 |
+
# Combined reward
|
| 155 |
+
reward = 0.7 * length_reward + 0.3 * diversity_reward
|
| 156 |
+
rewards.append(reward)
|
| 157 |
+
|
| 158 |
+
return torch.tensor(rewards, device=self.device)
|
| 159 |
+
|
| 160 |
+
def forward(self, input_ids, attention_mask):
|
| 161 |
+
outputs = self.model(
|
| 162 |
+
input_ids=input_ids,
|
| 163 |
+
attention_mask=attention_mask,
|
| 164 |
+
return_dict=True
|
| 165 |
+
)
|
| 166 |
+
return outputs.logits
|
| 167 |
+
|
| 168 |
+
def training_step(self, batch, batch_idx):
|
| 169 |
+
# Generate completions
|
| 170 |
+
input_ids = batch["input_ids"]
|
| 171 |
+
attention_mask = batch["attention_mask"]
|
| 172 |
+
prompts = batch["prompt"]
|
| 173 |
+
|
| 174 |
+
# Generate multiple completions for each prompt
|
| 175 |
+
all_completions = []
|
| 176 |
+
for _ in range(self.hparams.num_generations):
|
| 177 |
+
outputs = self.model.generate(
|
| 178 |
+
input_ids=input_ids,
|
| 179 |
+
attention_mask=attention_mask,
|
| 180 |
+
max_new_tokens=128,
|
| 181 |
+
do_sample=True,
|
| 182 |
+
temperature=0.7,
|
| 183 |
+
top_p=0.9,
|
| 184 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 185 |
+
)
|
| 186 |
+
completions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 187 |
+
all_completions.extend(completions)
|
| 188 |
+
|
| 189 |
+
# Calculate rewards
|
| 190 |
+
rewards = self.reward_function(all_completions)
|
| 191 |
+
|
| 192 |
+
# Calculate KL divergence
|
| 193 |
+
ref_model = self.get_reference_model()
|
| 194 |
+
with torch.no_grad():
|
| 195 |
+
ref_outputs = ref_model(
|
| 196 |
+
input_ids=input_ids,
|
| 197 |
+
attention_mask=attention_mask,
|
| 198 |
+
return_dict=True
|
| 199 |
+
)
|
| 200 |
+
ref_logits = ref_outputs.logits
|
| 201 |
+
|
| 202 |
+
policy_logits = self(input_ids, attention_mask)
|
| 203 |
+
kl_div = torch.nn.functional.kl_div(
|
| 204 |
+
torch.nn.functional.log_softmax(policy_logits, dim=-1),
|
| 205 |
+
torch.nn.functional.softmax(ref_logits, dim=-1),
|
| 206 |
+
reduction='batchmean'
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Calculate GRPO loss
|
| 210 |
+
loss = -rewards.mean() + self.hparams.beta * kl_div
|
| 211 |
+
|
| 212 |
+
self.log("train_loss", loss)
|
| 213 |
+
self.log("train_reward", rewards.mean())
|
| 214 |
+
self.log("train_kl_div", kl_div)
|
| 215 |
+
|
| 216 |
+
return loss
|
| 217 |
+
|
| 218 |
+
def configure_optimizers(self):
|
| 219 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
|
| 220 |
+
scheduler = get_linear_schedule_with_warmup(
|
| 221 |
+
optimizer,
|
| 222 |
+
num_warmup_steps=self.hparams.warmup_steps,
|
| 223 |
+
num_training_steps=self.hparams.num_train_epochs * len(self.train_dataloader())
|
| 224 |
+
)
|
| 225 |
+
return {
|
| 226 |
+
"optimizer": optimizer,
|
| 227 |
+
"lr_scheduler": {
|
| 228 |
+
"scheduler": scheduler,
|
| 229 |
+
"monitor": "train_loss",
|
| 230 |
+
"frequency": 1
|
| 231 |
+
}
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
def on_train_end(self):
|
| 235 |
+
# Clean up reference model to free memory
|
| 236 |
+
if self.ref_model is not None:
|
| 237 |
+
del self.ref_model
|
| 238 |
+
self.ref_model = None
|
| 239 |
+
torch.cuda.empty_cache()
|
| 240 |
+
|
| 241 |
+
def train_dataloader(self):
|
| 242 |
+
if self.train_dataset is None:
|
| 243 |
+
raise ValueError("Train dataset not provided")
|
| 244 |
+
return DataLoader(
|
| 245 |
+
self.train_dataset,
|
| 246 |
+
batch_size=self.hparams.batch_size,
|
| 247 |
+
shuffle=True,
|
| 248 |
+
num_workers=4,
|
| 249 |
+
persistent_workers=True,
|
| 250 |
+
pin_memory=True
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
class TextDataModule(pl.LightningDataModule):
|
| 254 |
+
def __init__(
|
| 255 |
+
self,
|
| 256 |
+
tokenizer,
|
| 257 |
+
max_length=256,
|
| 258 |
+
batch_size=4,
|
| 259 |
+
num_workers=4,
|
| 260 |
+
pin_memory=True,
|
| 261 |
+
):
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.tokenizer = tokenizer
|
| 264 |
+
self.max_length = max_length
|
| 265 |
+
self.batch_size = batch_size
|
| 266 |
+
self.num_workers = num_workers
|
| 267 |
+
self.pin_memory = pin_memory
|
| 268 |
+
|
| 269 |
+
def main():
|
| 270 |
+
# Load dataset
|
| 271 |
+
dataset = load_dataset("tatsu-lab/alpaca")
|
| 272 |
+
train_dataset = dataset["train"].select(range(500))
|
| 273 |
+
|
| 274 |
+
# Initialize tokenizer with left padding
|
| 275 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
| 276 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 277 |
+
tokenizer.padding_side = 'left'
|
| 278 |
+
|
| 279 |
+
# Create dataset with reduced max length
|
| 280 |
+
train_dataset = TextDataset(train_dataset, tokenizer, max_length=128)
|
| 281 |
+
|
| 282 |
+
# Initialize model with optimized parameters for RTX 4060 Laptop
|
| 283 |
+
model = GRPOModel(
|
| 284 |
+
train_dataset=train_dataset,
|
| 285 |
+
batch_size=2,
|
| 286 |
+
num_generations=2,
|
| 287 |
+
max_length=128,
|
| 288 |
+
learning_rate=1e-5,
|
| 289 |
+
beta=0.02,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# Initialize logger and callbacks
|
| 293 |
+
wandb_logger = WandbLogger(project="llm-finetuning")
|
| 294 |
+
checkpoint_callback = ModelCheckpoint(
|
| 295 |
+
dirpath="./checkpoints",
|
| 296 |
+
filename="model-{epoch:02d}-{step:04d}",
|
| 297 |
+
monitor="train_loss",
|
| 298 |
+
mode="min",
|
| 299 |
+
save_top_k=3,
|
| 300 |
+
)
|
| 301 |
+
early_stopping = EarlyStopping(
|
| 302 |
+
monitor="train_loss",
|
| 303 |
+
patience=3,
|
| 304 |
+
mode="min",
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# Training configuration
|
| 308 |
+
training_args = TrainingArguments(
|
| 309 |
+
output_dir="./fine-tuned-model",
|
| 310 |
+
num_train_epochs=3,
|
| 311 |
+
per_device_train_batch_size=2,
|
| 312 |
+
gradient_accumulation_steps=4,
|
| 313 |
+
learning_rate=1e-5,
|
| 314 |
+
weight_decay=0.01,
|
| 315 |
+
warmup_steps=50,
|
| 316 |
+
logging_steps=10,
|
| 317 |
+
save_strategy="epoch",
|
| 318 |
+
evaluation_strategy="no",
|
| 319 |
+
fp16=False,
|
| 320 |
+
gradient_checkpointing=True,
|
| 321 |
+
optim="adamw_torch",
|
| 322 |
+
lr_scheduler_type="cosine",
|
| 323 |
+
remove_unused_columns=False,
|
| 324 |
+
report_to="wandb",
|
| 325 |
+
dataloader_num_workers=4,
|
| 326 |
+
dataloader_pin_memory=True,
|
| 327 |
+
torch_compile=True,
|
| 328 |
+
max_grad_norm=1.0,
|
| 329 |
+
group_by_length=True,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Initialize trainer with memory-optimized settings
|
| 333 |
+
trainer = pl.Trainer(
|
| 334 |
+
max_epochs=3,
|
| 335 |
+
accelerator="gpu",
|
| 336 |
+
devices=1,
|
| 337 |
+
precision="32",
|
| 338 |
+
gradient_clip_val=1.0,
|
| 339 |
+
accumulate_grad_batches=4,
|
| 340 |
+
log_every_n_steps=10,
|
| 341 |
+
val_check_interval=0.5,
|
| 342 |
+
callbacks=[
|
| 343 |
+
checkpoint_callback,
|
| 344 |
+
early_stopping,
|
| 345 |
+
],
|
| 346 |
+
strategy="auto",
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
# Train the model
|
| 350 |
+
console.print("[bold green]Starting training...[/bold green]")
|
| 351 |
+
console.print("[bold yellow]Training with optimized settings for RTX 4060 Laptop GPU[/bold yellow]")
|
| 352 |
+
console.print(f"Batch size: {model.hparams.batch_size}")
|
| 353 |
+
console.print(f"Generations per prompt: {model.hparams.num_generations}")
|
| 354 |
+
console.print(f"Max sequence length: {model.hparams.max_length}")
|
| 355 |
+
trainer.fit(model)
|
| 356 |
+
console.print("[bold green]Training completed![/bold green]")
|
| 357 |
+
|
| 358 |
+
# Save the model
|
| 359 |
+
model.model.save_pretrained("./fine-tuned-model")
|
| 360 |
+
model.tokenizer.save_pretrained("./fine-tuned-model")
|
| 361 |
+
console.print("[bold green]Model saved successfully![/bold green]")
|
| 362 |
+
|
| 363 |
+
# Test the model
|
| 364 |
+
test_prompt = "What is machine learning?"
|
| 365 |
+
console.print("\n[bold blue]Testing the model:[/bold blue]")
|
| 366 |
+
console.print(f"Original prompt: {test_prompt}")
|
| 367 |
+
|
| 368 |
+
inputs = model.tokenizer(test_prompt, return_tensors="pt").to(model.device)
|
| 369 |
+
outputs = model.model.generate(
|
| 370 |
+
**inputs,
|
| 371 |
+
max_new_tokens=128,
|
| 372 |
+
do_sample=True,
|
| 373 |
+
temperature=0.7,
|
| 374 |
+
top_p=0.9,
|
| 375 |
+
)
|
| 376 |
+
response = model.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 377 |
+
console.print(f"Generated response: {response}")
|
| 378 |
+
|
| 379 |
+
if __name__ == "__main__":
|
| 380 |
+
main()
|