Spaces:
Sleeping
Sleeping
Update src/utils.py
Browse files- src/utils.py +14 -24
src/utils.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pickle
|
| 3 |
import pandas as pd
|
| 4 |
-
from sentence_transformers import SentenceTransformer, models
|
| 5 |
-
import torch
|
| 6 |
import numpy as np
|
| 7 |
-
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
DATASET_REPO = "param2004/Medilingua-dataset"
|
| 12 |
MODEL_REPO = "param2004/Medilingua-model"
|
| 13 |
|
|
@@ -15,47 +15,36 @@ MODEL_REPO = "param2004/Medilingua-model"
|
|
| 15 |
def load_model():
|
| 16 |
"""Load SapBERT dynamically from Hugging Face Hub"""
|
| 17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
-
|
| 19 |
st.info(f"🔬 Loading SapBERT from Hugging Face Hub on {device.upper()}...")
|
| 20 |
|
| 21 |
-
# Download model files dynamically
|
| 22 |
try:
|
|
|
|
| 23 |
model_path = hf_hub_download(
|
| 24 |
repo_id=MODEL_REPO,
|
| 25 |
filename="models/SapBERT-from-PubMedBERT-fulltext/pytorch_model.bin"
|
| 26 |
)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
word_embedding_model = models.Transformer(model_path)
|
| 30 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
| 31 |
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device=device)
|
| 32 |
|
| 33 |
-
st.success("✅ SapBERT loaded successfully from Hub.")
|
| 34 |
except Exception as e:
|
| 35 |
-
st.error(f"❌ Failed to load SapBERT from Hub
|
| 36 |
st.warning("⚠️ Falling back to 'all-MiniLM-L6-v2' model.")
|
| 37 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
| 38 |
|
| 39 |
return model
|
| 40 |
|
| 41 |
-
|
| 42 |
@st.cache_resource
|
| 43 |
def load_data():
|
| 44 |
"""Load embeddings and dataset dynamically from Hugging Face Hub"""
|
| 45 |
try:
|
| 46 |
-
# Download embeddings
|
| 47 |
-
question_emb_path = hf_hub_download(
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
)
|
| 51 |
-
doctor_emb_path = hf_hub_download(
|
| 52 |
-
repo_id=DATASET_REPO,
|
| 53 |
-
filename="dataset/doctor_embeddings.pkl"
|
| 54 |
-
)
|
| 55 |
-
dataset_csv_path = hf_hub_download(
|
| 56 |
-
repo_id=DATASET_REPO,
|
| 57 |
-
filename="dataset/dataset.csv"
|
| 58 |
-
)
|
| 59 |
|
| 60 |
# Load embeddings
|
| 61 |
with open(question_emb_path, 'rb') as f:
|
|
@@ -66,11 +55,12 @@ def load_data():
|
|
| 66 |
doctor_data = pickle.load(f)
|
| 67 |
doctor_embeddings = doctor_data.get('embeddings').astype('float32')
|
| 68 |
|
| 69 |
-
# Load CSV
|
| 70 |
df = pd.read_csv(dataset_csv_path)
|
| 71 |
df.dropna(subset=['Description', 'Patient', 'Doctor'], inplace=True)
|
| 72 |
df.drop_duplicates(inplace=True)
|
| 73 |
|
|
|
|
| 74 |
num_samples = min(len(df), len(question_embeddings), len(doctor_embeddings))
|
| 75 |
df = df.iloc[:num_samples]
|
| 76 |
question_embeddings = question_embeddings[:num_samples]
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pickle
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from sentence_transformers import SentenceTransformer, models
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
+
from src.search import init_faiss
|
| 9 |
|
| 10 |
+
# Hugging Face repo IDs
|
| 11 |
DATASET_REPO = "param2004/Medilingua-dataset"
|
| 12 |
MODEL_REPO = "param2004/Medilingua-model"
|
| 13 |
|
|
|
|
| 15 |
def load_model():
|
| 16 |
"""Load SapBERT dynamically from Hugging Face Hub"""
|
| 17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 18 |
st.info(f"🔬 Loading SapBERT from Hugging Face Hub on {device.upper()}...")
|
| 19 |
|
|
|
|
| 20 |
try:
|
| 21 |
+
# Download model files from Hub
|
| 22 |
model_path = hf_hub_download(
|
| 23 |
repo_id=MODEL_REPO,
|
| 24 |
filename="models/SapBERT-from-PubMedBERT-fulltext/pytorch_model.bin"
|
| 25 |
)
|
| 26 |
|
| 27 |
+
# Build SentenceTransformer manually
|
| 28 |
word_embedding_model = models.Transformer(model_path)
|
| 29 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
| 30 |
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device=device)
|
| 31 |
|
| 32 |
+
st.success("✅ SapBERT loaded successfully from Hugging Face Hub.")
|
| 33 |
except Exception as e:
|
| 34 |
+
st.error(f"❌ Failed to load SapBERT from Hub: {e}")
|
| 35 |
st.warning("⚠️ Falling back to 'all-MiniLM-L6-v2' model.")
|
| 36 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
| 37 |
|
| 38 |
return model
|
| 39 |
|
|
|
|
| 40 |
@st.cache_resource
|
| 41 |
def load_data():
|
| 42 |
"""Load embeddings and dataset dynamically from Hugging Face Hub"""
|
| 43 |
try:
|
| 44 |
+
# Download embeddings & CSV from Hub
|
| 45 |
+
question_emb_path = hf_hub_download(DATASET_REPO, filename="dataset/question_embeddings.pkl")
|
| 46 |
+
doctor_emb_path = hf_hub_download(DATASET_REPO, filename="dataset/doctor_embeddings.pkl")
|
| 47 |
+
dataset_csv_path = hf_hub_download(DATASET_REPO, filename="dataset/dataset.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# Load embeddings
|
| 50 |
with open(question_emb_path, 'rb') as f:
|
|
|
|
| 55 |
doctor_data = pickle.load(f)
|
| 56 |
doctor_embeddings = doctor_data.get('embeddings').astype('float32')
|
| 57 |
|
| 58 |
+
# Load dataset CSV
|
| 59 |
df = pd.read_csv(dataset_csv_path)
|
| 60 |
df.dropna(subset=['Description', 'Patient', 'Doctor'], inplace=True)
|
| 61 |
df.drop_duplicates(inplace=True)
|
| 62 |
|
| 63 |
+
# Ensure all arrays align
|
| 64 |
num_samples = min(len(df), len(question_embeddings), len(doctor_embeddings))
|
| 65 |
df = df.iloc[:num_samples]
|
| 66 |
question_embeddings = question_embeddings[:num_samples]
|