Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,140 +1,83 @@
|
|
| 1 |
-
"""
|
| 2 |
-
SchoolSpiritΒ AI β Graniteβ3.3β2B chatbot (GradioΒ 4.3, messages API)
|
| 3 |
-
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 4 |
-
β’ Persistent HF cache: HF_HOME=/data/.huggingface (25Β GB tier)
|
| 5 |
-
β’ Persistent request log: /data/requests.log
|
| 6 |
-
β’ Detailed system prompt (brand + guardrails)
|
| 7 |
-
β’ Traces every request: Received β Prompt β generate() timing
|
| 8 |
-
β’ Cleans replies & removes any stray βUser:β / βAI:β echoes
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
-
# ββββββββββββββββββββ standard libraries βββββββββββββββββββββββββββββββββββ
|
| 12 |
-
from __future__ import annotations
|
| 13 |
import os, re, time, datetime, traceback
|
| 14 |
-
# βββββ gradio + hf transformers ββββββββββββββββββββββββββββββββββββββββββββ
|
| 15 |
import gradio as gr
|
| 16 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 17 |
from transformers.utils import logging as hf_logging
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 21 |
-
LOG_FILE = "/data/requests.log"
|
| 22 |
-
|
| 23 |
-
def log(msg: str) -> None:
|
| 24 |
-
"""Print + append to /data/requests.log with UTC timestamp."""
|
| 25 |
ts = datetime.datetime.utcnow().strftime("%H:%M:%S.%f")[:-3]
|
| 26 |
line = f"[{ts}] {msg}"
|
| 27 |
print(line, flush=True)
|
| 28 |
-
try:
|
| 29 |
-
with open(LOG_FILE, "a") as f:
|
| 30 |
-
|
| 31 |
-
except FileNotFoundError:
|
| 32 |
-
pass
|
| 33 |
-
|
| 34 |
-
# ββββββββββββββββββββ chatbot configuration ββββββββββββββββββββββββββββββββ
|
| 35 |
-
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct" # 2Β B params, Apacheβ2
|
| 36 |
-
MAX_TURNS = 6 # keep last N user/assistant pairs
|
| 37 |
-
MAX_TOKENS = 128 # reply length (raise if you have patience)
|
| 38 |
-
MAX_INPUT_CH = 400 # user message length guard
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"
|
| 43 |
-
"GPU hardware for schools.\n\n"
|
| 44 |
-
"β’ Keep answers concise, upbeat, and ageβappropriate (Kβ12).\n"
|
| 45 |
-
"β’ If you are unsure, say so and suggest contacting a human staff member.\n"
|
| 46 |
-
"β’ Never request personal data beyond an email if the user volunteers it.\n"
|
| 47 |
-
"β’ Do **not** provide medical, legal, or financial advice.\n"
|
| 48 |
-
"β’ No politics, mature content, or profanity.\n"
|
| 49 |
-
"Respond in a friendly, encouraging toneβas a helpful school mascot!"
|
| 50 |
)
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
#
|
| 53 |
hf_logging.set_verbosity_error()
|
| 54 |
try:
|
| 55 |
-
log("Loading
|
| 56 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 57 |
model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
-
MODEL_ID, device_map="auto", torch_dtype="auto"
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
"text-generation",
|
| 62 |
-
model=model,
|
| 63 |
-
tokenizer=tok,
|
| 64 |
-
max_new_tokens=MAX_TOKENS,
|
| 65 |
-
do_sample=True,
|
| 66 |
-
temperature=0.7,
|
| 67 |
-
)
|
| 68 |
MODEL_ERR = None
|
| 69 |
log("Model loaded β")
|
| 70 |
-
except Exception as exc:
|
| 71 |
MODEL_ERR, gen = f"Model load error: {exc}", None
|
| 72 |
log(MODEL_ERR)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
"""Collapse whitespace & guarantee nonβempty string."""
|
| 77 |
-
return re.sub(r"\s+", " ", txt.strip()) or "β¦"
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
return msgs if len(msgs) <= 1 + MAX_TURNS * 2 else [msgs[0]] + msgs[-MAX_TURNS * 2 :]
|
| 82 |
-
|
| 83 |
-
# ββββββββββββββββββββ core chat function βββββββββββββββββββββββββββββββββββ
|
| 84 |
-
def chat_fn(user_msg: str, history: list[dict] | None):
|
| 85 |
log(f"User sent {len(user_msg)} chars")
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
# ensure history list exists & begins with system prompt
|
| 88 |
-
if not history or history[0]["role"] != "system":
|
| 89 |
-
history = [{"role": "system", "content": SYSTEM_MSG}]
|
| 90 |
-
|
| 91 |
-
# fatal modelβload failure
|
| 92 |
-
if MODEL_ERR:
|
| 93 |
-
return MODEL_ERR
|
| 94 |
-
|
| 95 |
-
# basic userβinput checks
|
| 96 |
user_msg = clean(user_msg or "")
|
| 97 |
-
if not user_msg:
|
| 98 |
-
|
| 99 |
-
if len(user_msg) > MAX_INPUT_CH:
|
| 100 |
return f"Message too long (>{MAX_INPUT_CH} chars)."
|
| 101 |
|
| 102 |
-
|
| 103 |
-
history
|
| 104 |
-
history = trim_history(history)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
if m["role"] == "system":
|
| 110 |
-
prompt_lines.append(m["content"])
|
| 111 |
-
elif m["role"] == "user":
|
| 112 |
-
prompt_lines.append(f"User: {m['content']}")
|
| 113 |
-
else:
|
| 114 |
-
prompt_lines.append(f"AI: {m['content']}")
|
| 115 |
-
prompt_lines.append("AI:")
|
| 116 |
prompt = "\n".join(prompt_lines)
|
| 117 |
-
log(f"Prompt {len(prompt)} chars
|
| 118 |
|
| 119 |
-
|
| 120 |
-
t0 = time.time()
|
| 121 |
try:
|
| 122 |
raw = gen(prompt)[0]["generated_text"]
|
| 123 |
-
reply = clean(raw.split("AI:",
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
reply = "SorryβAI backend crashed. Please try again later."
|
| 130 |
|
| 131 |
return reply
|
| 132 |
|
| 133 |
-
#
|
| 134 |
gr.ChatInterface(
|
| 135 |
fn=chat_fn,
|
| 136 |
chatbot=gr.Chatbot(height=480, type="messages"),
|
| 137 |
title="SchoolSpiritΒ AI Chat",
|
| 138 |
-
theme=gr.themes.Soft(primary_hue="blue"),
|
| 139 |
-
type="messages",
|
| 140 |
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os, re, time, datetime, traceback
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 4 |
from transformers.utils import logging as hf_logging
|
| 5 |
|
| 6 |
+
# Persistent cache + request log
|
| 7 |
+
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 8 |
+
LOG_FILE = "/data/requests.log"
|
| 9 |
+
def log(msg):
|
|
|
|
|
|
|
| 10 |
ts = datetime.datetime.utcnow().strftime("%H:%M:%S.%f")[:-3]
|
| 11 |
line = f"[{ts}] {msg}"
|
| 12 |
print(line, flush=True)
|
| 13 |
+
try:
|
| 14 |
+
with open(LOG_FILE, "a") as f: f.write(line + "\n")
|
| 15 |
+
except FileNotFoundError: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Config
|
| 18 |
+
MODEL_ID, MAX_TURNS, MAX_TOKENS, MAX_INPUT_CH = (
|
| 19 |
+
"ibm-granite/granite-3.3-2b-instruct", 4, 64, 300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
+
SYSTEM_MSG = ("You are SchoolSpiritΒ AI, the upbeat mascot for a company that "
|
| 22 |
+
"installs onβprem AI chatbots in schools. Keep answers short, "
|
| 23 |
+
"friendly, and safe.")
|
| 24 |
|
| 25 |
+
# Load model
|
| 26 |
hf_logging.set_verbosity_error()
|
| 27 |
try:
|
| 28 |
+
log("Loading model β¦")
|
| 29 |
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 30 |
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
MODEL_ID, device_map="auto", torch_dtype="auto")
|
| 32 |
+
gen = pipeline("text-generation", model=model, tokenizer=tok,
|
| 33 |
+
max_new_tokens=MAX_TOKENS, do_sample=True, temperature=0.6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
MODEL_ERR = None
|
| 35 |
log("Model loaded β")
|
| 36 |
+
except Exception as exc:
|
| 37 |
MODEL_ERR, gen = f"Model load error: {exc}", None
|
| 38 |
log(MODEL_ERR)
|
| 39 |
|
| 40 |
+
clean = lambda t: re.sub(r"\s+", " ", t.strip()) or "β¦"
|
| 41 |
+
trim = lambda m: m if len(m)<=1+MAX_TURNS*2 else [m[0]]+m[-MAX_TURNS*2:]
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Chat logic
|
| 44 |
+
def chat_fn(user_msg, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
log(f"User sent {len(user_msg)} chars")
|
| 46 |
+
if not history or history[0]["role"]!="system":
|
| 47 |
+
history=[{"role":"system","content":SYSTEM_MSG}]
|
| 48 |
+
if MODEL_ERR: return MODEL_ERR
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
user_msg = clean(user_msg or "")
|
| 51 |
+
if not user_msg: return "Please type something."
|
| 52 |
+
if len(user_msg)>MAX_INPUT_CH:
|
|
|
|
| 53 |
return f"Message too long (>{MAX_INPUT_CH} chars)."
|
| 54 |
|
| 55 |
+
history.append({"role":"user","content":user_msg})
|
| 56 |
+
history = trim(history)
|
|
|
|
| 57 |
|
| 58 |
+
prompt_lines=[m["content"] if m["role"]=="system"
|
| 59 |
+
else f'{"User" if m["role"]=="user" else "AI"}: {m["content"]}'
|
| 60 |
+
for m in history]+["AI:"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
prompt = "\n".join(prompt_lines)
|
| 62 |
+
log(f"Prompt {len(prompt)} chars β generating")
|
| 63 |
|
| 64 |
+
t0=time.time()
|
|
|
|
| 65 |
try:
|
| 66 |
raw = gen(prompt)[0]["generated_text"]
|
| 67 |
+
reply = clean(raw.split("AI:",1)[-1])
|
| 68 |
+
reply = re.split(r"\b(?:User:|AI:)", reply, 1)[0].strip() # β cut here
|
| 69 |
+
log(f"generate() {time.time()-t0:.2f}s, reply {len(reply)} chars")
|
| 70 |
+
except Exception:
|
| 71 |
+
log("β Inference exception:\n"+traceback.format_exc())
|
| 72 |
+
reply="Sorryβbackend crashed. Please try again later."
|
|
|
|
| 73 |
|
| 74 |
return reply
|
| 75 |
|
| 76 |
+
# UI
|
| 77 |
gr.ChatInterface(
|
| 78 |
fn=chat_fn,
|
| 79 |
chatbot=gr.Chatbot(height=480, type="messages"),
|
| 80 |
title="SchoolSpiritΒ AI Chat",
|
| 81 |
+
theme=gr.themes.Soft(primary_hue="blue"),
|
| 82 |
+
type="messages",
|
| 83 |
).launch()
|