Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,300 +1,300 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
-
import uuid
|
| 4 |
-
import json
|
| 5 |
-
import time
|
| 6 |
-
import asyncio
|
| 7 |
-
from threading import Thread
|
| 8 |
-
|
| 9 |
-
import gradio as gr
|
| 10 |
-
import spaces
|
| 11 |
-
import torch
|
| 12 |
-
import numpy as np
|
| 13 |
-
from PIL import Image
|
| 14 |
-
import cv2
|
| 15 |
-
import edge_tts
|
| 16 |
-
|
| 17 |
-
from transformers import (
|
| 18 |
-
AutoModelForCausalLM,
|
| 19 |
-
AutoTokenizer,
|
| 20 |
-
TextIteratorStreamer,
|
| 21 |
-
Qwen2VLForConditionalGeneration,
|
| 22 |
-
AutoProcessor,
|
| 23 |
-
)
|
| 24 |
-
from transformers.image_utils import load_image
|
| 25 |
-
|
| 26 |
-
# Constants for text generation
|
| 27 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 28 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 29 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 30 |
-
|
| 31 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
-
|
| 33 |
-
# Load text-only model and tokenizer
|
| 34 |
-
model_id = "prithivMLmods/Galactic-Qwen-14B-Exp2"
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
-
model_id,
|
| 38 |
-
device_map="auto",
|
| 39 |
-
torch_dtype=torch.bfloat16,
|
| 40 |
-
)
|
| 41 |
-
model.eval()
|
| 42 |
-
|
| 43 |
-
# Load multimodal processor and model
|
| 44 |
-
MODEL_ID = "prithivMLmods/Imgscope-OCR-2B-0527"
|
| 45 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 46 |
-
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 47 |
-
MODEL_ID,
|
| 48 |
-
trust_remote_code=True,
|
| 49 |
-
torch_dtype=torch.float16
|
| 50 |
-
).to("cuda").eval()
|
| 51 |
-
|
| 52 |
-
# Edge TTS voices mapping for new tags.
|
| 53 |
-
TTS_VOICE_MAP = {
|
| 54 |
-
"@jennyneural": "en-US-JennyNeural",
|
| 55 |
-
"@guyneural": "en-US-GuyNeural",
|
| 56 |
-
"@palomaneural": "es-US-PalomaNeural",
|
| 57 |
-
"@alonsoneural": "es-US-AlonsoNeural",
|
| 58 |
-
"@madhurneural": "hi-IN-MadhurNeural"
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 62 |
-
"""
|
| 63 |
-
Convert text to speech using Edge TTS and save as MP3.
|
| 64 |
-
"""
|
| 65 |
-
communicate = edge_tts.Communicate(text, voice)
|
| 66 |
-
await communicate.save(output_file)
|
| 67 |
-
return output_file
|
| 68 |
-
|
| 69 |
-
def clean_chat_history(chat_history):
|
| 70 |
-
"""
|
| 71 |
-
Filter out any chat entries whose "content" is not a string.
|
| 72 |
-
This helps prevent errors when concatenating previous messages.
|
| 73 |
-
"""
|
| 74 |
-
cleaned = []
|
| 75 |
-
for msg in chat_history:
|
| 76 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 77 |
-
cleaned.append(msg)
|
| 78 |
-
return cleaned
|
| 79 |
-
|
| 80 |
-
def downsample_video(video_path):
|
| 81 |
-
"""
|
| 82 |
-
Downsamples the video to 10 evenly spaced frames.
|
| 83 |
-
Each frame is returned as a PIL image along with its timestamp.
|
| 84 |
-
"""
|
| 85 |
-
vidcap = cv2.VideoCapture(video_path)
|
| 86 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 87 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 88 |
-
frames = []
|
| 89 |
-
# Sample 10 evenly spaced frames.
|
| 90 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 91 |
-
for i in frame_indices:
|
| 92 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 93 |
-
success, image = vidcap.read()
|
| 94 |
-
if success:
|
| 95 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
| 96 |
-
pil_image = Image.fromarray(image)
|
| 97 |
-
timestamp = round(i / fps, 2)
|
| 98 |
-
frames.append((pil_image, timestamp))
|
| 99 |
-
vidcap.release()
|
| 100 |
-
return frames
|
| 101 |
-
|
| 102 |
-
def progress_bar_html(label: str) -> str:
|
| 103 |
-
"""
|
| 104 |
-
Returns an HTML snippet for a thin progress bar with a label.
|
| 105 |
-
The progress bar is styled as a light cyan animated bar.
|
| 106 |
-
"""
|
| 107 |
-
return f'''
|
| 108 |
-
<div style="display: flex; align-items: center;">
|
| 109 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 110 |
-
<div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
|
| 111 |
-
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
|
| 112 |
-
</div>
|
| 113 |
-
</div>
|
| 114 |
-
<style>
|
| 115 |
-
@keyframes loading {{
|
| 116 |
-
0% {{ transform: translateX(-100%); }}
|
| 117 |
-
100% {{ transform: translateX(100%); }}
|
| 118 |
-
}}
|
| 119 |
-
</style>
|
| 120 |
-
'''
|
| 121 |
-
|
| 122 |
-
@spaces.GPU
|
| 123 |
-
def generate(input_dict: dict, chat_history: list[dict],
|
| 124 |
-
max_new_tokens: int = 1024,
|
| 125 |
-
temperature: float = 0.6,
|
| 126 |
-
top_p: float = 0.9,
|
| 127 |
-
top_k: int = 50,
|
| 128 |
-
repetition_penalty: float = 1.2):
|
| 129 |
-
"""
|
| 130 |
-
Generates chatbot responses with support for multimodal input, video processing,
|
| 131 |
-
and Edge TTS when using the new tags @JennyNeural or @GuyNeural.
|
| 132 |
-
Special command:
|
| 133 |
-
- "@video-infer": triggers video processing using Imgscope-OCR
|
| 134 |
-
"""
|
| 135 |
-
text = input_dict["text"]
|
| 136 |
-
files = input_dict.get("files", [])
|
| 137 |
-
lower_text = text.strip().lower()
|
| 138 |
-
|
| 139 |
-
# Check for TTS tag in the prompt.
|
| 140 |
-
tts_voice = None
|
| 141 |
-
for tag, voice in TTS_VOICE_MAP.items():
|
| 142 |
-
if lower_text.startswith(tag):
|
| 143 |
-
tts_voice = voice
|
| 144 |
-
text = text[len(tag):].strip() # Remove the tag from the prompt.
|
| 145 |
-
break
|
| 146 |
-
|
| 147 |
-
# Branch for video processing with Callisto OCR3.
|
| 148 |
-
if lower_text.startswith("@video-infer"):
|
| 149 |
-
prompt = text[len("@video-infer"):].strip() if not tts_voice else text
|
| 150 |
-
if files:
|
| 151 |
-
# Assume the first file is a video.
|
| 152 |
-
video_path = files[0]
|
| 153 |
-
frames = downsample_video(video_path)
|
| 154 |
-
messages = [
|
| 155 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 156 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
| 157 |
-
]
|
| 158 |
-
# Append each frame with its timestamp.
|
| 159 |
-
for frame in frames:
|
| 160 |
-
image, timestamp = frame
|
| 161 |
-
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
| 162 |
-
image.save(image_path)
|
| 163 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 164 |
-
messages[1]["content"].append({"type": "image", "url": image_path})
|
| 165 |
-
else:
|
| 166 |
-
messages = [
|
| 167 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 168 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
| 169 |
-
]
|
| 170 |
-
# Enable truncation to avoid token/feature mismatch.
|
| 171 |
-
inputs = processor.apply_chat_template(
|
| 172 |
-
messages,
|
| 173 |
-
tokenize=True,
|
| 174 |
-
add_generation_prompt=True,
|
| 175 |
-
return_dict=True,
|
| 176 |
-
return_tensors="pt",
|
| 177 |
-
truncation=True,
|
| 178 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 179 |
-
).to("cuda")
|
| 180 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 181 |
-
generation_kwargs = {
|
| 182 |
-
**inputs,
|
| 183 |
-
"streamer": streamer,
|
| 184 |
-
"max_new_tokens": max_new_tokens,
|
| 185 |
-
"do_sample": True,
|
| 186 |
-
"temperature": temperature,
|
| 187 |
-
"top_p": top_p,
|
| 188 |
-
"top_k": top_k,
|
| 189 |
-
"repetition_penalty": repetition_penalty,
|
| 190 |
-
}
|
| 191 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 192 |
-
thread.start()
|
| 193 |
-
buffer = ""
|
| 194 |
-
yield progress_bar_html("Processing video with Imgscope-OCR")
|
| 195 |
-
for new_text in streamer:
|
| 196 |
-
buffer += new_text
|
| 197 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 198 |
-
time.sleep(0.01)
|
| 199 |
-
yield buffer
|
| 200 |
-
return
|
| 201 |
-
|
| 202 |
-
# Multimodal processing when files are provided.
|
| 203 |
-
if files:
|
| 204 |
-
if len(files) > 1:
|
| 205 |
-
images = [load_image(image) for image in files]
|
| 206 |
-
elif len(files) == 1:
|
| 207 |
-
images = [load_image(files[0])]
|
| 208 |
-
else:
|
| 209 |
-
images = []
|
| 210 |
-
messages = [{
|
| 211 |
-
"role": "user",
|
| 212 |
-
"content": [
|
| 213 |
-
*[{"type": "image", "image": image} for image in images],
|
| 214 |
-
{"type": "text", "text": text},
|
| 215 |
-
]
|
| 216 |
-
}]
|
| 217 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 218 |
-
# Enable truncation explicitly here as well.
|
| 219 |
-
inputs = processor(
|
| 220 |
-
text=[prompt_full],
|
| 221 |
-
images=images,
|
| 222 |
-
return_tensors="pt",
|
| 223 |
-
padding=True,
|
| 224 |
-
truncation=True,
|
| 225 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 226 |
-
).to("cuda")
|
| 227 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 228 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 229 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 230 |
-
thread.start()
|
| 231 |
-
buffer = ""
|
| 232 |
-
yield progress_bar_html("Processing image with Imgscope-OCR")
|
| 233 |
-
for new_text in streamer:
|
| 234 |
-
buffer += new_text
|
| 235 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 236 |
-
time.sleep(0.01)
|
| 237 |
-
yield buffer
|
| 238 |
-
else:
|
| 239 |
-
# Normal text conversation processing with Pocket Llama.
|
| 240 |
-
conversation = clean_chat_history(chat_history)
|
| 241 |
-
conversation.append({"role": "user", "content": text})
|
| 242 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 243 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 244 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 245 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 246 |
-
input_ids = input_ids.to(model.device)
|
| 247 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 248 |
-
generation_kwargs = {
|
| 249 |
-
"input_ids": input_ids,
|
| 250 |
-
"streamer": streamer,
|
| 251 |
-
"max_new_tokens": max_new_tokens,
|
| 252 |
-
"do_sample": True,
|
| 253 |
-
"top_p": top_p,
|
| 254 |
-
"top_k": top_k,
|
| 255 |
-
"temperature": temperature,
|
| 256 |
-
"num_beams": 1,
|
| 257 |
-
"repetition_penalty": repetition_penalty,
|
| 258 |
-
}
|
| 259 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 260 |
-
t.start()
|
| 261 |
-
outputs = []
|
| 262 |
-
yield progress_bar_html("Processing With Galactic Qwen")
|
| 263 |
-
for new_text in streamer:
|
| 264 |
-
outputs.append(new_text)
|
| 265 |
-
yield "".join(outputs)
|
| 266 |
-
final_response = "".join(outputs)
|
| 267 |
-
yield final_response
|
| 268 |
-
|
| 269 |
-
# If a TTS voice was specified, convert the final response to speech.
|
| 270 |
-
if tts_voice:
|
| 271 |
-
output_file = asyncio.run(text_to_speech(final_response, tts_voice))
|
| 272 |
-
yield gr.Audio(output_file, autoplay=True)
|
| 273 |
-
|
| 274 |
-
# Create the Gradio ChatInterface with the custom CSS applied
|
| 275 |
-
demo = gr.ChatInterface(
|
| 276 |
-
fn=generate,
|
| 277 |
-
additional_inputs=[
|
| 278 |
-
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 279 |
-
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 280 |
-
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 281 |
-
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 282 |
-
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 283 |
-
],
|
| 284 |
-
examples=[
|
| 285 |
-
["Write the code that converts temperatures between Celsius and Fahrenheit in short"],
|
| 286 |
-
[{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}],
|
| 287 |
-
["@JennyNeural Who was Nikola Tesla and what were his contributions?"],
|
| 288 |
-
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}]
|
| 289 |
-
],
|
| 290 |
-
cache_examples=False,
|
| 291 |
-
description="# **Imgscope-OCR
|
| 292 |
-
type="messages",
|
| 293 |
-
fill_height=True,
|
| 294 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
|
| 295 |
-
stop_btn="Stop Generation",
|
| 296 |
-
multimodal=True,
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
if __name__ == "__main__":
|
| 300 |
demo.queue(max_size=20).launch(share=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import asyncio
|
| 7 |
+
from threading import Thread
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import spaces
|
| 11 |
+
import torch
|
| 12 |
+
import numpy as np
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import cv2
|
| 15 |
+
import edge_tts
|
| 16 |
+
|
| 17 |
+
from transformers import (
|
| 18 |
+
AutoModelForCausalLM,
|
| 19 |
+
AutoTokenizer,
|
| 20 |
+
TextIteratorStreamer,
|
| 21 |
+
Qwen2VLForConditionalGeneration,
|
| 22 |
+
AutoProcessor,
|
| 23 |
+
)
|
| 24 |
+
from transformers.image_utils import load_image
|
| 25 |
+
|
| 26 |
+
# Constants for text generation
|
| 27 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 28 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 29 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
|
| 33 |
+
# Load text-only model and tokenizer
|
| 34 |
+
model_id = "prithivMLmods/Galactic-Qwen-14B-Exp2"
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_id,
|
| 38 |
+
device_map="auto",
|
| 39 |
+
torch_dtype=torch.bfloat16,
|
| 40 |
+
)
|
| 41 |
+
model.eval()
|
| 42 |
+
|
| 43 |
+
# Load multimodal processor and model
|
| 44 |
+
MODEL_ID = "prithivMLmods/Imgscope-OCR-2B-0527"
|
| 45 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 46 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 47 |
+
MODEL_ID,
|
| 48 |
+
trust_remote_code=True,
|
| 49 |
+
torch_dtype=torch.float16
|
| 50 |
+
).to("cuda").eval()
|
| 51 |
+
|
| 52 |
+
# Edge TTS voices mapping for new tags.
|
| 53 |
+
TTS_VOICE_MAP = {
|
| 54 |
+
"@jennyneural": "en-US-JennyNeural",
|
| 55 |
+
"@guyneural": "en-US-GuyNeural",
|
| 56 |
+
"@palomaneural": "es-US-PalomaNeural",
|
| 57 |
+
"@alonsoneural": "es-US-AlonsoNeural",
|
| 58 |
+
"@madhurneural": "hi-IN-MadhurNeural"
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 62 |
+
"""
|
| 63 |
+
Convert text to speech using Edge TTS and save as MP3.
|
| 64 |
+
"""
|
| 65 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 66 |
+
await communicate.save(output_file)
|
| 67 |
+
return output_file
|
| 68 |
+
|
| 69 |
+
def clean_chat_history(chat_history):
|
| 70 |
+
"""
|
| 71 |
+
Filter out any chat entries whose "content" is not a string.
|
| 72 |
+
This helps prevent errors when concatenating previous messages.
|
| 73 |
+
"""
|
| 74 |
+
cleaned = []
|
| 75 |
+
for msg in chat_history:
|
| 76 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 77 |
+
cleaned.append(msg)
|
| 78 |
+
return cleaned
|
| 79 |
+
|
| 80 |
+
def downsample_video(video_path):
|
| 81 |
+
"""
|
| 82 |
+
Downsamples the video to 10 evenly spaced frames.
|
| 83 |
+
Each frame is returned as a PIL image along with its timestamp.
|
| 84 |
+
"""
|
| 85 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 86 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 87 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 88 |
+
frames = []
|
| 89 |
+
# Sample 10 evenly spaced frames.
|
| 90 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 91 |
+
for i in frame_indices:
|
| 92 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 93 |
+
success, image = vidcap.read()
|
| 94 |
+
if success:
|
| 95 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
| 96 |
+
pil_image = Image.fromarray(image)
|
| 97 |
+
timestamp = round(i / fps, 2)
|
| 98 |
+
frames.append((pil_image, timestamp))
|
| 99 |
+
vidcap.release()
|
| 100 |
+
return frames
|
| 101 |
+
|
| 102 |
+
def progress_bar_html(label: str) -> str:
|
| 103 |
+
"""
|
| 104 |
+
Returns an HTML snippet for a thin progress bar with a label.
|
| 105 |
+
The progress bar is styled as a light cyan animated bar.
|
| 106 |
+
"""
|
| 107 |
+
return f'''
|
| 108 |
+
<div style="display: flex; align-items: center;">
|
| 109 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 110 |
+
<div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
|
| 111 |
+
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
|
| 112 |
+
</div>
|
| 113 |
+
</div>
|
| 114 |
+
<style>
|
| 115 |
+
@keyframes loading {{
|
| 116 |
+
0% {{ transform: translateX(-100%); }}
|
| 117 |
+
100% {{ transform: translateX(100%); }}
|
| 118 |
+
}}
|
| 119 |
+
</style>
|
| 120 |
+
'''
|
| 121 |
+
|
| 122 |
+
@spaces.GPU
|
| 123 |
+
def generate(input_dict: dict, chat_history: list[dict],
|
| 124 |
+
max_new_tokens: int = 1024,
|
| 125 |
+
temperature: float = 0.6,
|
| 126 |
+
top_p: float = 0.9,
|
| 127 |
+
top_k: int = 50,
|
| 128 |
+
repetition_penalty: float = 1.2):
|
| 129 |
+
"""
|
| 130 |
+
Generates chatbot responses with support for multimodal input, video processing,
|
| 131 |
+
and Edge TTS when using the new tags @JennyNeural or @GuyNeural.
|
| 132 |
+
Special command:
|
| 133 |
+
- "@video-infer": triggers video processing using Imgscope-OCR
|
| 134 |
+
"""
|
| 135 |
+
text = input_dict["text"]
|
| 136 |
+
files = input_dict.get("files", [])
|
| 137 |
+
lower_text = text.strip().lower()
|
| 138 |
+
|
| 139 |
+
# Check for TTS tag in the prompt.
|
| 140 |
+
tts_voice = None
|
| 141 |
+
for tag, voice in TTS_VOICE_MAP.items():
|
| 142 |
+
if lower_text.startswith(tag):
|
| 143 |
+
tts_voice = voice
|
| 144 |
+
text = text[len(tag):].strip() # Remove the tag from the prompt.
|
| 145 |
+
break
|
| 146 |
+
|
| 147 |
+
# Branch for video processing with Callisto OCR3.
|
| 148 |
+
if lower_text.startswith("@video-infer"):
|
| 149 |
+
prompt = text[len("@video-infer"):].strip() if not tts_voice else text
|
| 150 |
+
if files:
|
| 151 |
+
# Assume the first file is a video.
|
| 152 |
+
video_path = files[0]
|
| 153 |
+
frames = downsample_video(video_path)
|
| 154 |
+
messages = [
|
| 155 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 156 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
| 157 |
+
]
|
| 158 |
+
# Append each frame with its timestamp.
|
| 159 |
+
for frame in frames:
|
| 160 |
+
image, timestamp = frame
|
| 161 |
+
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
| 162 |
+
image.save(image_path)
|
| 163 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 164 |
+
messages[1]["content"].append({"type": "image", "url": image_path})
|
| 165 |
+
else:
|
| 166 |
+
messages = [
|
| 167 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 168 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
| 169 |
+
]
|
| 170 |
+
# Enable truncation to avoid token/feature mismatch.
|
| 171 |
+
inputs = processor.apply_chat_template(
|
| 172 |
+
messages,
|
| 173 |
+
tokenize=True,
|
| 174 |
+
add_generation_prompt=True,
|
| 175 |
+
return_dict=True,
|
| 176 |
+
return_tensors="pt",
|
| 177 |
+
truncation=True,
|
| 178 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 179 |
+
).to("cuda")
|
| 180 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 181 |
+
generation_kwargs = {
|
| 182 |
+
**inputs,
|
| 183 |
+
"streamer": streamer,
|
| 184 |
+
"max_new_tokens": max_new_tokens,
|
| 185 |
+
"do_sample": True,
|
| 186 |
+
"temperature": temperature,
|
| 187 |
+
"top_p": top_p,
|
| 188 |
+
"top_k": top_k,
|
| 189 |
+
"repetition_penalty": repetition_penalty,
|
| 190 |
+
}
|
| 191 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 192 |
+
thread.start()
|
| 193 |
+
buffer = ""
|
| 194 |
+
yield progress_bar_html("Processing video with Imgscope-OCR")
|
| 195 |
+
for new_text in streamer:
|
| 196 |
+
buffer += new_text
|
| 197 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 198 |
+
time.sleep(0.01)
|
| 199 |
+
yield buffer
|
| 200 |
+
return
|
| 201 |
+
|
| 202 |
+
# Multimodal processing when files are provided.
|
| 203 |
+
if files:
|
| 204 |
+
if len(files) > 1:
|
| 205 |
+
images = [load_image(image) for image in files]
|
| 206 |
+
elif len(files) == 1:
|
| 207 |
+
images = [load_image(files[0])]
|
| 208 |
+
else:
|
| 209 |
+
images = []
|
| 210 |
+
messages = [{
|
| 211 |
+
"role": "user",
|
| 212 |
+
"content": [
|
| 213 |
+
*[{"type": "image", "image": image} for image in images],
|
| 214 |
+
{"type": "text", "text": text},
|
| 215 |
+
]
|
| 216 |
+
}]
|
| 217 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 218 |
+
# Enable truncation explicitly here as well.
|
| 219 |
+
inputs = processor(
|
| 220 |
+
text=[prompt_full],
|
| 221 |
+
images=images,
|
| 222 |
+
return_tensors="pt",
|
| 223 |
+
padding=True,
|
| 224 |
+
truncation=True,
|
| 225 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 226 |
+
).to("cuda")
|
| 227 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 228 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 229 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 230 |
+
thread.start()
|
| 231 |
+
buffer = ""
|
| 232 |
+
yield progress_bar_html("Processing image with Imgscope-OCR")
|
| 233 |
+
for new_text in streamer:
|
| 234 |
+
buffer += new_text
|
| 235 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 236 |
+
time.sleep(0.01)
|
| 237 |
+
yield buffer
|
| 238 |
+
else:
|
| 239 |
+
# Normal text conversation processing with Pocket Llama.
|
| 240 |
+
conversation = clean_chat_history(chat_history)
|
| 241 |
+
conversation.append({"role": "user", "content": text})
|
| 242 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 243 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 244 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 245 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 246 |
+
input_ids = input_ids.to(model.device)
|
| 247 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 248 |
+
generation_kwargs = {
|
| 249 |
+
"input_ids": input_ids,
|
| 250 |
+
"streamer": streamer,
|
| 251 |
+
"max_new_tokens": max_new_tokens,
|
| 252 |
+
"do_sample": True,
|
| 253 |
+
"top_p": top_p,
|
| 254 |
+
"top_k": top_k,
|
| 255 |
+
"temperature": temperature,
|
| 256 |
+
"num_beams": 1,
|
| 257 |
+
"repetition_penalty": repetition_penalty,
|
| 258 |
+
}
|
| 259 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 260 |
+
t.start()
|
| 261 |
+
outputs = []
|
| 262 |
+
yield progress_bar_html("Processing With Galactic Qwen")
|
| 263 |
+
for new_text in streamer:
|
| 264 |
+
outputs.append(new_text)
|
| 265 |
+
yield "".join(outputs)
|
| 266 |
+
final_response = "".join(outputs)
|
| 267 |
+
yield final_response
|
| 268 |
+
|
| 269 |
+
# If a TTS voice was specified, convert the final response to speech.
|
| 270 |
+
if tts_voice:
|
| 271 |
+
output_file = asyncio.run(text_to_speech(final_response, tts_voice))
|
| 272 |
+
yield gr.Audio(output_file, autoplay=True)
|
| 273 |
+
|
| 274 |
+
# Create the Gradio ChatInterface with the custom CSS applied
|
| 275 |
+
demo = gr.ChatInterface(
|
| 276 |
+
fn=generate,
|
| 277 |
+
additional_inputs=[
|
| 278 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 279 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 280 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 281 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 282 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 283 |
+
],
|
| 284 |
+
examples=[
|
| 285 |
+
["Write the code that converts temperatures between Celsius and Fahrenheit in short"],
|
| 286 |
+
[{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}],
|
| 287 |
+
["@JennyNeural Who was Nikola Tesla and what were his contributions?"],
|
| 288 |
+
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}]
|
| 289 |
+
],
|
| 290 |
+
cache_examples=False,
|
| 291 |
+
description="# **Imgscope-OCR**",
|
| 292 |
+
type="messages",
|
| 293 |
+
fill_height=True,
|
| 294 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
|
| 295 |
+
stop_btn="Stop Generation",
|
| 296 |
+
multimodal=True,
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
if __name__ == "__main__":
|
| 300 |
demo.queue(max_size=20).launch(share=True)
|