randomblock1's picture
Create app.py
f0fc394 verified
raw
history blame
2.33 kB
import torch
import torchaudio
import gradio as gr
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
# device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# load model + processor
model_name = "ibm-granite/granite-speech-3.3-8b"
processor = AutoProcessor.from_pretrained(model_name)
tokenizer = processor.tokenizer
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name, device_map=device, torch_dtype=torch.bfloat16
)
today_str = date.today().strftime("%B %d, %Y")
system_prompt = (
"Knowledge Cutoff Date: April 2024.\n"
f"Today's Date: {today_str}.\n"
"You are Granite, developed by IBM. You are a helpful AI assistant."
)
def transcribe(audio_file):
# load wav file
wav, sr = torchaudio.load(audio_file, normalize=True)
if wav.shape[0] != 1 or sr != 16000:
# resample + convert to mono if needed
wav = torch.mean(wav, dim=0, keepdim=True) # mono
wav = torchaudio.functional.resample(wav, sr, 16000)
sr = 16000
# user prompt
user_prompt = "<|audio|>can you transcribe the speech into a written format?"
chat = [
dict(role="system", content=system_prompt),
dict(role="user", content=user_prompt),
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# run model
model_inputs = processor(prompt, wav, sampling_rate=sr, device=device, return_tensors="pt").to(device)
model_outputs = model.generate(
**model_inputs,
max_new_tokens=200,
do_sample=False,
num_beams=1
)
# strip prompt tokens
num_input_tokens = model_inputs["input_ids"].shape[-1]
new_tokens = torch.unsqueeze(model_outputs[0, num_input_tokens:], dim=0)
output_text = tokenizer.batch_decode(
new_tokens, add_special_tokens=False, skip_special_tokens=True
)
return output_text[0].strip()
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Granite 3.3 Speech-to-Text Demo")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Audio (16kHz mono preferred)")
output_text = gr.Textbox(label="Transcription", lines=5)
transcribe_btn = gr.Button("Transcribe")
transcribe_btn.click(fn=transcribe, inputs=audio_input, outputs=output_text)
demo.launch()