|
|
from utils.load_csv import download_csv |
|
|
|
|
|
def box_plot_data(ASR_model): |
|
|
|
|
|
|
|
|
csv_result = f'test_with_{ASR_model.replace("/","_")}_WER.csv' |
|
|
df = download_csv(csv_result) |
|
|
|
|
|
|
|
|
print(df.columns) |
|
|
|
|
|
|
|
|
df.columns = df.columns.str.strip() |
|
|
|
|
|
|
|
|
wer_Gender = { |
|
|
"Male": df[df["gender"] == "male"]["WER"].tolist(), |
|
|
"Female": df[df["gender"] == "female"]["WER"].tolist() |
|
|
} |
|
|
wer_SEG = { |
|
|
"Low": df[df["socioeconomic_bkgd"] == "Low"]["WER"].tolist(), |
|
|
"Affluent": df[df["socioeconomic_bkgd"] == "Affluent"]["WER"].tolist(), |
|
|
"Medium": df[df["socioeconomic_bkgd"] == "Medium"]["WER"].tolist(), |
|
|
} |
|
|
wer_Ethnicity = { |
|
|
"Asian, South Asian or Asian American": df[df["ethnicity"] == "Asian, South Asian or Asian American"]["WER"].tolist(), |
|
|
"Black or African American": df[df["ethnicity"] == "Black or African American"]["WER"].tolist(), |
|
|
"Hispanic, Latino, or Spanish": df[df["ethnicity"] == "Hispanic, Latino, or Spanish"]["WER"].tolist(), |
|
|
"Middle Eastern or North African": df[df["ethnicity"] == "Middle Eastern or North African"]["WER"].tolist(), |
|
|
"Native American, American Indian, or Alaska Native": df[df["ethnicity"] == "Native American, American Indian, or Alaska Native"]["WER"].tolist(), |
|
|
"Native Hawaiian or Other Pacific Islander": df[df["ethnicity"] == "Native Hawaiian or Other Pacific Islander"]["WER"].tolist(), |
|
|
"White": df[df["ethnicity"] == "White"]["WER"].tolist(), |
|
|
} |
|
|
wer_Language = { |
|
|
"English": df[df["first_language"] == "English"]["WER"].tolist(), |
|
|
"German": df[df["first_language"] == "German"]["WER"].tolist(), |
|
|
"French": df[df["first_language"] == "French"]["WER"].tolist(), |
|
|
"Arabic": df[df["first_language"] == "Arabic"]["WER"].tolist(), |
|
|
"Cantonese": df[df["first_language"] == "Cantonese"]["WER"].tolist(), |
|
|
"Creole": df[df["first_language"] == "Creole"]["WER"].tolist(), |
|
|
"Dutch": df[df["first_language"] == "Dutch"]["WER"].tolist(), |
|
|
"English/Turkish": df[df["first_language"] == "English/Turkish"]["WER"].tolist(), |
|
|
"Filipino": df[df["first_language"] == "Filipino"]["WER"].tolist(), |
|
|
"Hindi": df[df["first_language"] == "Hindi"]["WER"].tolist(), |
|
|
"Hmong": df[df["first_language"] == "Hmong"]["WER"].tolist(), |
|
|
"Hindi": df[df["first_language"] == "Hindi"]["WER"].tolist(), |
|
|
"Indonesian": df[df["first_language"] == "Indonesian"]["WER"].tolist(), |
|
|
"Italian": df[df["first_language"] == "Italian"]["WER"].tolist(), |
|
|
"Japanese": df[df["first_language"] == "Japanese"]["WER"].tolist(), |
|
|
"Korean": df[df["first_language"] == "Korean"]["WER"].tolist(), |
|
|
"Laotian": df[df["first_language"] == "Laotian"]["WER"].tolist(), |
|
|
"Malay": df[df["first_language"] == "Malay"]["WER"].tolist(), |
|
|
"Malaysian": df[df["first_language"] == "Malaysian"]["WER"].tolist(), |
|
|
"Mandarin": df[df["first_language"] == "Mandarin"]["WER"].tolist(), |
|
|
"Marathi": df[df["first_language"] == "Marathi"]["WER"].tolist(), |
|
|
"Nepali": df[df["first_language"] == "Nepali"]["WER"].tolist(), |
|
|
"Other": df[df["first_language"] == "Other"]["WER"].tolist(), |
|
|
"Portuguese": df[df["first_language"] == "Portuguese"]["WER"].tolist(), |
|
|
"Russian": df[df["first_language"] == "Russian"]["WER"].tolist(), |
|
|
"Spanish": df[df["first_language"] == "Spanish"]["WER"].tolist(), |
|
|
"Tagalog": df[df["first_language"] == "Tagalog"]["WER"].tolist(), |
|
|
"Turkish": df[df["first_language"] == "Turkish"]["WER"].tolist(), |
|
|
"Russian": df[df["first_language"] == "Russian"]["WER"].tolist(), |
|
|
"Ukrainian": df[df["first_language"] == "Ukrainian"]["WER"].tolist(), |
|
|
"Urdu": df[df["first_language"] == "Urdu"]["WER"].tolist(), |
|
|
"Vietnamese": df[df["first_language"] == "Vietnamese"]["WER"].tolist(), |
|
|
} |
|
|
|
|
|
return wer_Gender, wer_SEG, wer_Ethnicity, wer_Language |