File size: 4,064 Bytes
259d504
 
 
 
53afe5a
4bf5dae
259d504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf5dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53afe5a
dc1dca9
259d504
 
 
 
 
 
 
 
 
 
 
 
 
5bfb146
259d504
 
 
 
 
 
4bf5dae
 
 
259d504
1310d0e
259d504
86f16e5
259d504
 
e62a54b
05a348e
5ee2847
86f16e5
259d504
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
37dfdda
259d504
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces
import json

# Load the processor and model
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

model = AutoModelForCausalLM.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

import json

def wrap_json_in_markdown(text):
    result = []
    stack = []
    json_start = None
    in_json = False
    i = 0
    while i < len(text):
        char = text[i]
        if char in ['{', '[']:
            if not in_json:
                json_start = i
                in_json = True
                stack.append(char)
            else:
                stack.append(char)
        elif char in ['}', ']'] and in_json:
            if not stack:
                # Unbalanced bracket, reset
                in_json = False
                json_start = None
            else:
                last = stack.pop()
                if (last == '{' and char != '}') or (last == '[' and char != ']'):
                    # Mismatched brackets
                    in_json = False
                    json_start = None
        if in_json and not stack:
            # Potential end of JSON
            json_str = text[json_start:i+1]
            try:
                # Try to parse the JSON to ensure it's valid
                parsed = json.loads(json_str)
                # Wrap in Markdown code block
                wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n"
                result.append(text[:json_start])  # Append text before JSON
                result.append(wrapped)           # Append wrapped JSON
                text = text[i+1:]                # Update the remaining text
                i = -1                           # Reset index
            except json.JSONDecodeError:
                # Not valid JSON, continue searching
                pass
            in_json = False
            json_start = None
        i += 1
    result.append(text)  # Append any remaining text
    return ''.join(result)

@spaces.GPU()
def process_image_and_text(image, text):
    # Process the image and text
    inputs = processor.process(
        images=[Image.fromarray(image)],
        text=text
    )

    # Move inputs to the correct device and make a batch of size 1
    inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}

    # Generate output
    output = model.generate_from_batch(
        inputs,
        GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
        tokenizer=processor.tokenizer
    )

    # Only get generated tokens; decode them to text
    generated_tokens = output[0, inputs['input_ids'].size(1):]
    generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
    generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text)
    
    return generated_text_w_json_wrapper

def chatbot(image, text, history):
    if image is None:
        return history + [("Please upload an image first.", None)]

    response = process_image_and_text(image, text)

    history.append({"role": "user", "content": text})
    history.append({"role": "assistant", "content": response})
    return history

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
    
    with gr.Row():
        image_input = gr.Image(type="numpy")
        chatbot_output = gr.Chatbot(type="messages")
    
    text_input = gr.Textbox(placeholder="Ask a question about the image...")
    submit_button = gr.Button("Submit")

    state = gr.State([])

    submit_button.click(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

    text_input.submit(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

demo.launch()