Spaces:
Build error
Build error
backup
Browse files
utils.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def process_and_push_dataset(
|
| 9 |
+
data_dir: str, hub_repo: str, token: str, private: bool = True
|
| 10 |
+
):
|
| 11 |
+
"""
|
| 12 |
+
Process local dataset files and push to Hugging Face Hub.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
data_dir (str): Path to the data directory containing submission folders
|
| 16 |
+
hub_repo (str): Name of the Hugging Face repository to push to
|
| 17 |
+
private (bool): Whether to make the pushed dataset private
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
datasets.Dataset: The processed dataset
|
| 21 |
+
"""
|
| 22 |
+
# List to store all records
|
| 23 |
+
all_records = []
|
| 24 |
+
|
| 25 |
+
# Walk through all subdirectories in data_dir
|
| 26 |
+
for root, dirs, files in os.walk(data_dir):
|
| 27 |
+
for file in files:
|
| 28 |
+
if file == "question.json":
|
| 29 |
+
file_path = Path(root) / file
|
| 30 |
+
try:
|
| 31 |
+
# Read the JSON file
|
| 32 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 33 |
+
record = json.load(f)
|
| 34 |
+
|
| 35 |
+
# Get the folder path for this record
|
| 36 |
+
folder_path = os.path.dirname(file_path)
|
| 37 |
+
|
| 38 |
+
# Fix image paths to include full path
|
| 39 |
+
if "question_images" in record:
|
| 40 |
+
record["question_images"] = [
|
| 41 |
+
str(Path(folder_path) / img_path)
|
| 42 |
+
for img_path in record["question_images"]
|
| 43 |
+
if img_path
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
if "rationale_images" in record:
|
| 47 |
+
record["rationale_images"] = [
|
| 48 |
+
str(Path(folder_path) / img_path)
|
| 49 |
+
for img_path in record["rationale_images"]
|
| 50 |
+
if img_path
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Flatten author_info dictionary
|
| 54 |
+
author_info = record.pop("author_info", {})
|
| 55 |
+
record.update(
|
| 56 |
+
{f"author_{k}": v for k, v in author_info.items()}
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Add the record
|
| 60 |
+
all_records.append(record)
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error processing {file_path}: {e}")
|
| 63 |
+
|
| 64 |
+
# Convert to DataFrame
|
| 65 |
+
df = pd.DataFrame(all_records)
|
| 66 |
+
|
| 67 |
+
# Sort by custom_id for consistency
|
| 68 |
+
if not df.empty and "custom_id" in df.columns:
|
| 69 |
+
df = df.sort_values("custom_id")
|
| 70 |
+
|
| 71 |
+
# Ensure all required columns exist with default values
|
| 72 |
+
required_columns = {
|
| 73 |
+
"custom_id": "",
|
| 74 |
+
"author_name": "",
|
| 75 |
+
"author_email_address": "",
|
| 76 |
+
"author_institution": "",
|
| 77 |
+
"question_categories": [],
|
| 78 |
+
"question": "",
|
| 79 |
+
"question_images": [],
|
| 80 |
+
"final_answer": "",
|
| 81 |
+
"rationale_text": "",
|
| 82 |
+
"rationale_images": [],
|
| 83 |
+
"image_attribution": "",
|
| 84 |
+
"subquestions_1_text": "",
|
| 85 |
+
"subquestions_1_answer": "",
|
| 86 |
+
"subquestions_2_text": "",
|
| 87 |
+
"subquestions_2_answer": "",
|
| 88 |
+
"subquestions_3_text": "",
|
| 89 |
+
"subquestions_3_answer": "",
|
| 90 |
+
"subquestions_4_text": "",
|
| 91 |
+
"subquestions_4_answer": "",
|
| 92 |
+
"subquestions_5_text": "",
|
| 93 |
+
"subquestions_5_answer": "",
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
for col, default_value in required_columns.items():
|
| 97 |
+
if col not in df.columns:
|
| 98 |
+
df[col] = default_value
|
| 99 |
+
|
| 100 |
+
# Define features
|
| 101 |
+
features = Features(
|
| 102 |
+
{
|
| 103 |
+
"custom_id": Value("string"),
|
| 104 |
+
"question": Value("string"),
|
| 105 |
+
"question_images": Sequence(ImageFeature()),
|
| 106 |
+
"question_categories": Sequence(Value("string")),
|
| 107 |
+
"final_answer": Value("string"),
|
| 108 |
+
"rationale_text": Value("string"),
|
| 109 |
+
"rationale_images": Sequence(ImageFeature()),
|
| 110 |
+
"image_attribution": Value("string"),
|
| 111 |
+
"subquestions_1_text": Value("string"),
|
| 112 |
+
"subquestions_1_answer": Value("string"),
|
| 113 |
+
"subquestions_2_text": Value("string"),
|
| 114 |
+
"subquestions_2_answer": Value("string"),
|
| 115 |
+
"subquestions_3_text": Value("string"),
|
| 116 |
+
"subquestions_3_answer": Value("string"),
|
| 117 |
+
"subquestions_4_text": Value("string"),
|
| 118 |
+
"subquestions_4_answer": Value("string"),
|
| 119 |
+
"subquestions_5_text": Value("string"),
|
| 120 |
+
"subquestions_5_answer": Value("string"),
|
| 121 |
+
"author_name": Value("string"),
|
| 122 |
+
"author_email_address": Value("string"),
|
| 123 |
+
"author_institution": Value("string"),
|
| 124 |
+
}
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Convert DataFrame to dict of lists (Hugging Face Dataset format)
|
| 128 |
+
dataset_dict = {col: df[col].tolist() for col in features.keys()}
|
| 129 |
+
|
| 130 |
+
# Create Dataset directly from dict
|
| 131 |
+
dataset = Dataset.from_dict(dataset_dict, features=features)
|
| 132 |
+
|
| 133 |
+
# Push to hub
|
| 134 |
+
dataset.push_to_hub(hub_repo, private=private, max_shard_size="200MB", token=token)
|
| 135 |
+
|
| 136 |
+
print(f"\nDataset Statistics:")
|
| 137 |
+
print(f"Total number of submissions: {len(dataset)}")
|
| 138 |
+
print(f"\nSuccessfully pushed dataset to {hub_repo}")
|
| 139 |
+
|
| 140 |
+
return dataset
|