Spaces:
Running
Running
Correction for runtime error
Browse files
app.py
CHANGED
|
@@ -17,7 +17,6 @@ LABEL_COLS = ['anger', 'fear', 'joy', 'sadness', 'surprise']
|
|
| 17 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 18 |
|
| 19 |
# --- CORRECTED FILE PATHS ---
|
| 20 |
-
# These paths now correctly point to the 'model/' directory.
|
| 21 |
MODEL_FILE = "Deploy/models/best_deberta_0.8558.pt"
|
| 22 |
THRESHOLD_FILE = "Deploy/models/optimal_thresholds_deberta.npy"
|
| 23 |
|
|
@@ -50,21 +49,22 @@ def load_global_assets():
|
|
| 50 |
|
| 51 |
print(f"Loading assets from {MODEL_FILE}...")
|
| 52 |
try:
|
| 53 |
-
#
|
| 54 |
-
#
|
| 55 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 56 |
CONFIG['MODEL_NAME'],
|
| 57 |
-
use_fast=False
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
model = DebertaClassifier(
|
| 61 |
n_classes=CONFIG['OUTPUT_DIM'],
|
| 62 |
model_name=CONFIG['MODEL_NAME'],
|
| 63 |
dropout=CONFIG['DROPOUT']
|
| 64 |
)
|
| 65 |
-
|
| 66 |
# Load the trained PyTorch state dict
|
| 67 |
-
# Ensure the file path is correct relative to the Space root directory
|
| 68 |
state_dict = torch.load(MODEL_FILE, map_location=torch.device('cpu'))
|
| 69 |
model.load_state_dict(state_dict)
|
| 70 |
model.to(DEVICE)
|
|
@@ -77,26 +77,20 @@ def load_global_assets():
|
|
| 77 |
print("Model and thresholds loaded successfully.")
|
| 78 |
except Exception as e:
|
| 79 |
print(f"Error loading model assets: {e}")
|
| 80 |
-
# Use gr.Warning instead of gr.Error to allow the app to initialize but show a warning
|
| 81 |
raise gr.Error(f"Deployment failed to load assets. Check file paths. Error: {e}")
|
|
|
|
| 82 |
# Call the loading function once before defining the interface
|
| 83 |
load_global_assets()
|
| 84 |
|
| 85 |
-
|
| 86 |
# --- 3. Gradio Interface Function ---
|
| 87 |
def classify_emotion(text: str) -> str:
|
| 88 |
-
"""
|
| 89 |
-
Takes user text, runs inference, applies thresholds, and returns
|
| 90 |
-
a formatted string of predicted emotions.
|
| 91 |
-
"""
|
| 92 |
if not text.strip():
|
| 93 |
return "Please enter a sentence to classify."
|
| 94 |
|
| 95 |
-
# Check if the model failed to load during startup
|
| 96 |
if model is None:
|
| 97 |
return "Model failed to load during startup. Check the Space logs for errors."
|
| 98 |
|
| 99 |
-
# Tokenize the input text
|
| 100 |
inputs = tokenizer(
|
| 101 |
text,
|
| 102 |
return_tensors="pt",
|
|
@@ -104,46 +98,35 @@ def classify_emotion(text: str) -> str:
|
|
| 104 |
padding='max_length',
|
| 105 |
max_length=CONFIG['MAX_LEN']
|
| 106 |
)
|
| 107 |
-
|
| 108 |
input_ids = inputs['input_ids'].to(DEVICE)
|
| 109 |
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 110 |
|
| 111 |
-
# Get model outputs
|
| 112 |
with torch.no_grad():
|
| 113 |
logits = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 114 |
|
| 115 |
-
# Apply Sigmoid activation
|
| 116 |
probabilities = torch.sigmoid(logits).squeeze(0).cpu().numpy()
|
| 117 |
-
|
| 118 |
-
# Apply the custom label-specific thresholds
|
| 119 |
predictions = probabilities > thresholds
|
| 120 |
|
| 121 |
-
# Map predictions back to your emotion labels
|
| 122 |
predicted_emotions = [
|
| 123 |
f"**{LABEL_COLS[i]}** ({probabilities[i]:.2f} > {thresholds[i]:.2f})"
|
| 124 |
for i, pred in enumerate(predictions) if pred
|
| 125 |
]
|
| 126 |
|
| 127 |
if predicted_emotions:
|
| 128 |
-
# Format the output as a list for the user
|
| 129 |
output_list = "\n".join([f"- {e}" for e in predicted_emotions])
|
| 130 |
return f"**Detected Emotions:**\n{output_list}"
|
| 131 |
else:
|
| 132 |
return "No emotions were detected above the optimal thresholds."
|
| 133 |
|
| 134 |
-
|
| 135 |
# --- 4. Define and Launch Gradio Interface ---
|
| 136 |
-
# Input component: Textbox
|
| 137 |
text_input = gr.Textbox(
|
| 138 |
lines=5,
|
| 139 |
placeholder="Example: I was so furious when they broke my camera, but happy I had a backup.",
|
| 140 |
label="Text Input"
|
| 141 |
)
|
| 142 |
|
| 143 |
-
# Output component: Textbox (set to display markdown for bold text and lists)
|
| 144 |
text_output = gr.Markdown(label="Predicted Emotions")
|
| 145 |
|
| 146 |
-
# Create the Gradio Interface
|
| 147 |
gr.Interface(
|
| 148 |
fn=classify_emotion,
|
| 149 |
inputs=text_input,
|
|
|
|
| 17 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 18 |
|
| 19 |
# --- CORRECTED FILE PATHS ---
|
|
|
|
| 20 |
MODEL_FILE = "Deploy/models/best_deberta_0.8558.pt"
|
| 21 |
THRESHOLD_FILE = "Deploy/models/optimal_thresholds_deberta.npy"
|
| 22 |
|
|
|
|
| 49 |
|
| 50 |
print(f"Loading assets from {MODEL_FILE}...")
|
| 51 |
try:
|
| 52 |
+
# Load slow tokenizer explicitly to avoid 'NoneType' endswith error
|
| 53 |
+
# Alternative: from transformers import DebertaV2Tokenizer
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 55 |
CONFIG['MODEL_NAME'],
|
| 56 |
+
use_fast=False,
|
| 57 |
+
force_download=True, # force fresh download to avoid cache issues
|
| 58 |
+
local_files_only=False
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
model = DebertaClassifier(
|
| 62 |
n_classes=CONFIG['OUTPUT_DIM'],
|
| 63 |
model_name=CONFIG['MODEL_NAME'],
|
| 64 |
dropout=CONFIG['DROPOUT']
|
| 65 |
)
|
| 66 |
+
|
| 67 |
# Load the trained PyTorch state dict
|
|
|
|
| 68 |
state_dict = torch.load(MODEL_FILE, map_location=torch.device('cpu'))
|
| 69 |
model.load_state_dict(state_dict)
|
| 70 |
model.to(DEVICE)
|
|
|
|
| 77 |
print("Model and thresholds loaded successfully.")
|
| 78 |
except Exception as e:
|
| 79 |
print(f"Error loading model assets: {e}")
|
|
|
|
| 80 |
raise gr.Error(f"Deployment failed to load assets. Check file paths. Error: {e}")
|
| 81 |
+
|
| 82 |
# Call the loading function once before defining the interface
|
| 83 |
load_global_assets()
|
| 84 |
|
|
|
|
| 85 |
# --- 3. Gradio Interface Function ---
|
| 86 |
def classify_emotion(text: str) -> str:
|
| 87 |
+
"""Tokenizes input, runs model inference, applies thresholds, formats output."""
|
|
|
|
|
|
|
|
|
|
| 88 |
if not text.strip():
|
| 89 |
return "Please enter a sentence to classify."
|
| 90 |
|
|
|
|
| 91 |
if model is None:
|
| 92 |
return "Model failed to load during startup. Check the Space logs for errors."
|
| 93 |
|
|
|
|
| 94 |
inputs = tokenizer(
|
| 95 |
text,
|
| 96 |
return_tensors="pt",
|
|
|
|
| 98 |
padding='max_length',
|
| 99 |
max_length=CONFIG['MAX_LEN']
|
| 100 |
)
|
|
|
|
| 101 |
input_ids = inputs['input_ids'].to(DEVICE)
|
| 102 |
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 103 |
|
|
|
|
| 104 |
with torch.no_grad():
|
| 105 |
logits = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 106 |
|
|
|
|
| 107 |
probabilities = torch.sigmoid(logits).squeeze(0).cpu().numpy()
|
|
|
|
|
|
|
| 108 |
predictions = probabilities > thresholds
|
| 109 |
|
|
|
|
| 110 |
predicted_emotions = [
|
| 111 |
f"**{LABEL_COLS[i]}** ({probabilities[i]:.2f} > {thresholds[i]:.2f})"
|
| 112 |
for i, pred in enumerate(predictions) if pred
|
| 113 |
]
|
| 114 |
|
| 115 |
if predicted_emotions:
|
|
|
|
| 116 |
output_list = "\n".join([f"- {e}" for e in predicted_emotions])
|
| 117 |
return f"**Detected Emotions:**\n{output_list}"
|
| 118 |
else:
|
| 119 |
return "No emotions were detected above the optimal thresholds."
|
| 120 |
|
|
|
|
| 121 |
# --- 4. Define and Launch Gradio Interface ---
|
|
|
|
| 122 |
text_input = gr.Textbox(
|
| 123 |
lines=5,
|
| 124 |
placeholder="Example: I was so furious when they broke my camera, but happy I had a backup.",
|
| 125 |
label="Text Input"
|
| 126 |
)
|
| 127 |
|
|
|
|
| 128 |
text_output = gr.Markdown(label="Predicted Emotions")
|
| 129 |
|
|
|
|
| 130 |
gr.Interface(
|
| 131 |
fn=classify_emotion,
|
| 132 |
inputs=text_input,
|