Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from typing import Any, Dict, Tuple
|
| 5 |
+
from urllib.request import urlopen, Request
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from functools import lru_cache
|
| 9 |
+
|
| 10 |
+
_MODEL_CACHE: Dict[str, Any] = {}
|
| 11 |
+
|
| 12 |
+
EXAMPLE_ITEMS = [
|
| 13 |
+
(
|
| 14 |
+
"https://assets.clevelandclinic.org/transform/LargeFeatureImage/cd71f4bd-81d4-45d8-a450-74df78e4477a/Apples-184940975-770x533-1_jpg",
|
| 15 |
+
"viddexa/nsfw-mini",
|
| 16 |
+
"Apples (mini)",
|
| 17 |
+
),
|
| 18 |
+
(
|
| 19 |
+
"https://img.freepik.com/free-photo/breast-screening-is-very-important-every-woman_329181-14953.jpg",
|
| 20 |
+
"viddexa/nsfw-nano",
|
| 21 |
+
"Breast screening (nano)",
|
| 22 |
+
),
|
| 23 |
+
(
|
| 24 |
+
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSbRwt56NYsiHwrT8oS-igzgeEzp7p3Jbe2dw&s",
|
| 25 |
+
"viddexa/nsfw-mini",
|
| 26 |
+
"Thumbnail (mini)",
|
| 27 |
+
),
|
| 28 |
+
(
|
| 29 |
+
"https://img.freepik.com/premium-photo/portrait-beautiful-young-woman_1048944-5548042.jpg",
|
| 30 |
+
"viddexa/nsfw-nano",
|
| 31 |
+
"Portrait (nano)",
|
| 32 |
+
),
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@lru_cache(maxsize=32)
|
| 37 |
+
def _download_image_bytes(image_url: str) -> bytes:
|
| 38 |
+
"""Download image bytes from URL with caching."""
|
| 39 |
+
req = Request(image_url, headers={"User-Agent": "viddexa-gradio-demo/1.0"})
|
| 40 |
+
with urlopen(req, timeout=20) as resp:
|
| 41 |
+
return resp.read()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _load_model(model_id: str, token: str | None = None) -> Any:
|
| 45 |
+
"""Load a model and cache it."""
|
| 46 |
+
if model_id in _MODEL_CACHE:
|
| 47 |
+
return _MODEL_CACHE[model_id]
|
| 48 |
+
try:
|
| 49 |
+
from moderators.auto_model import AutoModerator
|
| 50 |
+
model = AutoModerator.from_pretrained(model_id, token=token, use_fast=True)
|
| 51 |
+
_MODEL_CACHE[model_id] = model
|
| 52 |
+
return model
|
| 53 |
+
except Exception as e:
|
| 54 |
+
error_msg = f"Failed to load model: {model_id}. Error: {e}"
|
| 55 |
+
if "401" in str(e):
|
| 56 |
+
error_msg += "\n\nThis model may be private. Please ensure you have provided a valid Hugging Face token if required."
|
| 57 |
+
raise gr.Error(error_msg)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def _get_image_input(image_path: str | None, image_url: str | None) -> Image.Image:
|
| 61 |
+
"""Get image data from either an uploaded file path or a URL."""
|
| 62 |
+
if image_url:
|
| 63 |
+
try:
|
| 64 |
+
data = _download_image_bytes(image_url)
|
| 65 |
+
img = Image.open(BytesIO(data))
|
| 66 |
+
return img.convert("RGB")
|
| 67 |
+
except Exception as fetch_err:
|
| 68 |
+
raise gr.Error(f"Could not download or open the image from the URL: {fetch_err}")
|
| 69 |
+
elif image_path:
|
| 70 |
+
img = Image.open(image_path)
|
| 71 |
+
return img.convert("RGB")
|
| 72 |
+
else:
|
| 73 |
+
raise gr.Error("Please upload an image or provide an image URL.")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def _format_results(results: list) -> Tuple[str, Dict[str, float], str, Dict]:
|
| 77 |
+
"""Format the model output for the Gradio interface."""
|
| 78 |
+
if not results or "classifications" not in results[0]:
|
| 79 |
+
return "<div class='verdict-card'>No classifications found.</div>", {}, "No classifications found.", {}
|
| 80 |
+
|
| 81 |
+
classifications = results[0]["classifications"]
|
| 82 |
+
|
| 83 |
+
label_output: Dict[str, float]
|
| 84 |
+
if isinstance(classifications, dict):
|
| 85 |
+
label_output = {str(k): float(v) for k, v in classifications.items()}
|
| 86 |
+
else:
|
| 87 |
+
try:
|
| 88 |
+
label_output = {str(item['label']): float(item['score']) for item in classifications}
|
| 89 |
+
except Exception:
|
| 90 |
+
label_output = {}
|
| 91 |
+
|
| 92 |
+
scores = {label.lower(): score for label, score in label_output.items()}
|
| 93 |
+
nsfw_score = scores.get("nsfw", 0.0)
|
| 94 |
+
|
| 95 |
+
if nsfw_score > 0.7:
|
| 96 |
+
verdict_text = "HIGH RISK: NSFW"
|
| 97 |
+
verdict_class = "verdict-nsfw"
|
| 98 |
+
elif nsfw_score > 0.2:
|
| 99 |
+
verdict_text = "MEDIUM RISK: SENSITIVE"
|
| 100 |
+
verdict_class = "verdict-sensitive"
|
| 101 |
+
else:
|
| 102 |
+
verdict_text = "LOW RISK: SAFE"
|
| 103 |
+
verdict_class = "verdict-safe"
|
| 104 |
+
|
| 105 |
+
verdict_html = f"<div class='verdict-card {verdict_class}'>{verdict_text}</div>"
|
| 106 |
+
|
| 107 |
+
markdown_output = "### All Scores\n---\n"
|
| 108 |
+
for label, score in sorted(label_output.items(), key=lambda kv: kv[1], reverse=True):
|
| 109 |
+
markdown_output += f"- **{label.capitalize()}**: {score:.4f}\n"
|
| 110 |
+
|
| 111 |
+
return verdict_html, label_output, markdown_output, results[0]
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def analyze_image(image_path: str | None, image_url: str | None, model_choice: str,
|
| 115 |
+
token: str | None = None, progress=gr.Progress(track_tqdm=True)):
|
| 116 |
+
"""Main inference function for the Gradio interface."""
|
| 117 |
+
progress(0, desc="Initializing Analysis...")
|
| 118 |
+
progress(0.2, desc="Processing Image...")
|
| 119 |
+
input_image = _get_image_input(image_path, image_url)
|
| 120 |
+
progress(0.5, desc=f"Loading Model: {os.path.basename(model_choice)}...")
|
| 121 |
+
model = _load_model(model_choice, token)
|
| 122 |
+
progress(0.8, desc="Running Inference...")
|
| 123 |
+
results = model(input_image)
|
| 124 |
+
|
| 125 |
+
json_results = [
|
| 126 |
+
{"classifications": getattr(r, "classifications", r)}
|
| 127 |
+
for r in results
|
| 128 |
+
]
|
| 129 |
+
json_results = json.loads(json.dumps(json_results, ensure_ascii=False))
|
| 130 |
+
|
| 131 |
+
progress(1, desc="Complete!")
|
| 132 |
+
return _format_results(json_results)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def analyze_image_with_status(image_path: str | None, image_url: str | None, model_choice: str,
|
| 136 |
+
token: str | None = None, progress=gr.Progress(track_tqdm=True)):
|
| 137 |
+
"""Run analysis and return results with user-friendly status string."""
|
| 138 |
+
verdict_html, label_scores, md_scores, json_obj = analyze_image(image_path, image_url, model_choice, token, progress)
|
| 139 |
+
if image_url:
|
| 140 |
+
status = f"Last analysed URL: {image_url}"
|
| 141 |
+
elif image_path:
|
| 142 |
+
status = "Last analysed uploaded image."
|
| 143 |
+
else:
|
| 144 |
+
status = "Last analysed: —"
|
| 145 |
+
return verdict_html, label_scores, md_scores, json_obj, status
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def run_example_by_index(evt: gr.SelectData, token: str | None = None):
|
| 149 |
+
"""Handle gallery selection: run analysis for the selected example and update inputs."""
|
| 150 |
+
try:
|
| 151 |
+
idx = int(getattr(evt, "index", 0))
|
| 152 |
+
except Exception:
|
| 153 |
+
idx = 0
|
| 154 |
+
idx = max(0, min(idx, len(EXAMPLE_ITEMS) - 1))
|
| 155 |
+
url, model, caption = EXAMPLE_ITEMS[idx]
|
| 156 |
+
verdict_html, label_scores, md_scores, json_obj = analyze_image(None, url, model, token)
|
| 157 |
+
status = f"Last analysed example: {caption}"
|
| 158 |
+
return (
|
| 159 |
+
verdict_html,
|
| 160 |
+
label_scores,
|
| 161 |
+
md_scores,
|
| 162 |
+
json_obj,
|
| 163 |
+
gr.update(value=model),
|
| 164 |
+
gr.update(value=url),
|
| 165 |
+
status,
|
| 166 |
+
)
|