Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| import gradio as gr | |
| import requests | |
| from genai_chat_ai import AI,create_chat_session | |
| import torch | |
| from typing import Any, Callable, Optional, Tuple, Union,Iterator | |
| import numpy as np | |
| import torch.nn as nn # Import the missing module | |
| import noisereduce as nr | |
| def remove_noise_nr(audio_data,sr=16000): | |
| """يزيل الضوضاء باستخدام مكتبة noisereduce.""" | |
| reduced_noise = nr.reduce_noise(y=audio_data, sr=sr) | |
| return reduced_noise | |
| def _inference_forward_stream( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| speaker_embeddings: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| chunk_size: int = 32, # Chunk size for streaming output | |
| ) -> Iterator[torch.Tensor]: | |
| """Generates speech waveforms in a streaming fashion.""" | |
| if attention_mask is not None: | |
| padding_mask = attention_mask.unsqueeze(-1).float() | |
| else: | |
| padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() | |
| text_encoder_output = self.text_encoder( | |
| input_ids=input_ids, | |
| padding_mask=padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state | |
| hidden_states = hidden_states.transpose(1, 2) | |
| input_padding_mask = padding_mask.transpose(1, 2) | |
| prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means | |
| prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances | |
| if self.config.use_stochastic_duration_prediction: | |
| log_duration = self.duration_predictor( | |
| hidden_states, | |
| input_padding_mask, | |
| speaker_embeddings, | |
| reverse=True, | |
| noise_scale=self.noise_scale_duration, | |
| ) | |
| else: | |
| log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) | |
| length_scale = 1.0 / self.speaking_rate | |
| duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) | |
| predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() | |
| # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) | |
| indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) | |
| output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) | |
| output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) | |
| # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) | |
| attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) | |
| batch_size, _, output_length, input_length = attn_mask.shape | |
| cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) | |
| indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) | |
| valid_indices = indices.unsqueeze(0) < cum_duration | |
| valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) | |
| padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] | |
| attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask | |
| # Expand prior distribution | |
| prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) | |
| prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) | |
| prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale | |
| latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) | |
| spectrogram = latents * output_padding_mask | |
| for i in range(0, spectrogram.size(-1), chunk_size): | |
| with torch.no_grad(): | |
| wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings) | |
| yield wav.squeeze().cpu().numpy() | |
| api_key = os.environ.get("Id_mode_vits") | |
| headers = {"Authorization": f"Bearer {api_key}"} | |
| from transformers import AutoTokenizer,VitsModel | |
| import torch | |
| models= {} | |
| tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=api_key) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def get_model(name_model): | |
| global models | |
| if name_model in models: | |
| return models[name_model] | |
| models[name_model]=VitsModel.from_pretrained(name_model,token=api_key).to(device) | |
| models[name_model].decoder.apply_weight_norm() | |
| # torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
| # torch.nn.utils.weight_norm(self.decoder.conv_post) | |
| for flow in models[name_model].flow.flows: | |
| torch.nn.utils.weight_norm(flow.conv_pre) | |
| torch.nn.utils.weight_norm(flow.conv_post) | |
| return models[name_model] | |
| def genrate_speech(text,name_model): | |
| inputs=tokenizer(text,return_tensors="pt") | |
| model=get_model(name_model) | |
| with torch.no_grad(): | |
| wav=model( | |
| input_ids= inputs.input_ids.to(device), | |
| attention_mask=inputs.attention_mask.to(device), | |
| speaker_id=0 | |
| ).waveform.cpu().numpy().reshape(-1) | |
| return model.config.sampling_rate,wav | |
| def generate_audio(text,name_model,speaker_id=None): | |
| inputs = tokenizer(text, return_tensors="pt")#.input_ids | |
| speaker_embeddings = None | |
| model=get_model(name_model) | |
| #torch.cuda.empty_cache() | |
| with torch.no_grad(): | |
| for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256): | |
| yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes() | |
| def generate_audio_ai(text,name_model): | |
| text_answer = get_answer_ai(text) | |
| text_answer = remove_extra_spaces(text_answer) | |
| inputs = tokenizer(text_answer, return_tensors="pt")#.input_ids | |
| speaker_embeddings = None | |
| model=get_model(name_model) | |
| #torch.cuda.empty_cache() | |
| with torch.no_grad(): | |
| for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256): | |
| yield 16000,remove_noise_nr(chunk)#.cpu().numpy().squeeze()#.astype(np.int16).tobytes() | |
| def remove_extra_spaces(text): | |
| return ' '.join(text.split()) | |
| def query(text,API_URL): | |
| payload={"inputs": text} | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| return response.content | |
| def get_answer_ai(text): | |
| global AI | |
| try: | |
| response = AI.send_message(text) | |
| return response.text | |
| except : | |
| AI=create_chat_session() | |
| response = AI.send_message(text) | |
| return response.text | |
| def get_answer_ai_stream(text): | |
| #if session_ai is None: | |
| global AI | |
| try: | |
| response = AI.send_message(text,stream=True) | |
| return response | |
| except : | |
| AI=create_chat_session() | |
| response = AI.send_message(text,stream=True) | |
| return response | |
| def t2t(text): | |
| return get_answer_ai(text) | |
| def t2tstream(text): | |
| st='' | |
| response=get_answer_ai_stream(text) | |
| for chk in response: | |
| st+=chk.text | |
| yield st | |
| def t2s(text,name_model): | |
| return genrate_speech(text,name_model) | |
| #return get_answer_ai(text) | |
| def home_page(): | |
| return """ | |
| <div class="px-4 py-5 my-5 text-center"> | |
| <img class="d-block mx-auto mb-4" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(2).jpeg" alt="" width="72" height="57"> | |
| <h1 class="display-5 fw-bold">مرحباً بك في Wasm-Speeker</h1> | |
| <div class="col-lg-6 mx-auto"> | |
| <p class="lead mb-4"> | |
| Wasm-Speeker هو إطار متقدم يعتمد على تقنيات الذكاء الاصطناعي لتوليد الكلام من النصوص. | |
| تعتمد جميع النماذج على بنية VITS، التي تتيح توليد موجات صوتية واقعية بناءً على المدخلات النصية. | |
| النماذج تحتوي على محولات لتحليل النص وتوليد الكلام بناءً على خصائص الصوت المحلية لكل لهجة. | |
| </p> | |
| <div class="d-grid gap-2 d-sm-flex justify-content-sm-center"> | |
| <button type="button" class="btn btn-primary btn-lg px-4 gap-3">Primary button</button> | |
| <button type="button" class="btn btn-outline-secondary btn-lg px-4">Secondary</button> | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| def footer(): | |
| body="""<div class="container col-xxl-8 px-4 py-5"> | |
| <div class="row flex-lg-row-reverse align-items-center g-5 py-5"> | |
| <div class="col-10 col-sm-8 col-lg-6"> | |
| <img src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(3).jpeg" class="d-block mx-lg-auto img-fluid" alt="Bootstrap Themes" width="700" height="500" loading="lazy"> | |
| </div> | |
| <div class="col-lg-6"> | |
| <h1 class="display-5 fw-bold lh-1 mb-3">Responsive left-aligned hero with image</h1> | |
| <p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p> | |
| <div class="d-grid gap-2 d-md-flex justify-content-md-start"> | |
| <button type="button" class="btn btn-primary btn-lg px-4 me-md-2">Primary</button> | |
| <button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button> | |
| </div> | |
| </div> | |
| </div> | |
| </div> | |
| <div class="row p-4 pb-0 pe-lg-0 pt-lg-5 align-items-center rounded-3 border shadow-lg"> | |
| <div class="col-lg-7 p-3 p-lg-5 pt-lg-3"> | |
| <h1 class="display-4 fw-bold lh-1">Border hero with cropped image and shadows</h1> | |
| <p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p> | |
| <div class="d-grid gap-2 d-md-flex justify-content-md-start mb-4 mb-lg-3"> | |
| <button type="button" class="btn btn-primary btn-lg px-4 me-md-2 fw-bold">Primary</button> | |
| <button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button> | |
| </div> | |
| </div> | |
| <div class="col-lg-4 offset-lg-1 p-0 overflow-hidden shadow-lg"> | |
| <img class="rounded-lg-3" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(5).jpeg" alt="" width="720"> | |
| </div> | |
| </div> | |
| <div class="bg-dark text-secondary px-4 py-5 text-center"> | |
| <div > | |
| <h1 class="display-5 fw-bold text-white">Dark mode hero</h1> | |
| <div class="col-lg-6 mx-auto"> | |
| <p class="fs-5 mb-4">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p> | |
| <div class="d-grid gap-2 d-sm-flex justify-content-sm-center"> | |
| <button type="button" class="btn btn-outline-info btn-lg px-4 me-sm-3 fw-bold">Custom button</button> | |
| <button type="button" class="btn btn-outline-light btn-lg px-4">Secondary</button> | |
| </div> | |
| </div> | |
| </div> | |
| </div>""" | |
| return body | |
| import gradio as gr | |
| import os | |
| import plotly.express as px | |
| # Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. | |
| def random_plot(): | |
| df = px.data.iris() | |
| fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", | |
| size='petal_length', hover_data=['petal_width']) | |
| return fig | |
| def print_like_dislike(x: gr.LikeData): | |
| print(x.index, x.value, x.liked) | |
| from gradio_multimodalchatbot import MultimodalChatbot | |
| from gradio.data_classes import FileData | |
| import tempfile | |
| import soundfile as sf | |
| from gradio_client import Client | |
| def add_message(history, message): | |
| for x in message["files"]: | |
| history.append(((x,), None)) | |
| if message["text"] is not None: | |
| history.append((message["text"], None)) | |
| response_audio = genrate_speech(message["text"],'wasmdashai/vits-ar-sa-huba') | |
| history.append((gr.Audio(response_audio,scale=1,streaming=True),None)) | |
| return history | |
| def bot(history,message): | |
| if message["text"] is not None: | |
| txt_ai=get_answer_ai(message["text"] ) | |
| history[-1][1]=txt_ai#((None,txt_ai)) | |
| response_audio = genrate_speech(txt_ai,'wasmdashai/vits-ar-sa-A') | |
| history.append((None,gr.Audio(response_audio,scale=1,streaming=True))) | |
| return history, gr.MultimodalTextbox(value=None, interactive=False) | |
| fig = random_plot() | |
| # متغير لتخزين سجل المحادثة | |
| with gr.Blocks() as demo: # Use gr.Blocks to wrap the entire interface | |
| gr.HTML(""" | |
| <head> | |
| <!-- Required meta tags --> | |
| <meta charset="utf-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1"> | |
| <!-- Bootstrap CSS --> | |
| <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" | |
| integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous"> | |
| <title>Wasm-Speeker</title> | |
| </head> | |
| """) | |
| # العنوان الرئيسي | |
| gr.Markdown("# Wasm-Speeker: إطار الذكاء الاصطناعي لتوليد الكلام") | |
| # عرض الصورة الترحيبية | |
| gr.Image("9588e6d4-9959-4cfc-9697-fc9b996fcd97.jpeg", label="Wasm-Speeker") | |
| # إضافة CSS لجعل التبويبات RTL | |
| gr.HTML(""" | |
| <style> | |
| .gradio-tabs,body,div{ | |
| direction: rtl; | |
| } | |
| </style> | |
| """) | |
| with gr.Tab("الصفحة الرئيسية"): | |
| gr.HTML(home_page()) | |
| gr.Markdown("## مميزات Wasm-Speeker") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### 🛠 التخصص في اللهجة السعودية") | |
| gr.Markdown("Wasm-Speeker متخصص في إنتاج أصوات واقعية للهجة السعودية.") | |
| with gr.Column(): | |
| gr.Markdown("### 🎯 سهولة التدريب") | |
| gr.Markdown("يتميز Wasm-Speeker بسهولة التدريب وقابلية التوسع.") | |
| with gr.Column(): | |
| gr.Markdown("### ⚖️ الأداء المتوازن") | |
| gr.Markdown("يوفر أداءً متوازناً يجمع بين الجودة والسرعة.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### ⚡️ الاستخدام الفعال للموارد") | |
| gr.Markdown("تم تصميمه لاستخدام الموارد بفعالية وكفاءة.") | |
| with gr.Column(): | |
| gr.Markdown("### 🌍 الشعبية والانتشار") | |
| gr.Markdown("نموذج واسع الانتشار بين المطورين في تطبيقات مختلفة.") | |
| with gr.Column(): | |
| gr.Markdown("### 💾 حجم النموذج") | |
| gr.Markdown("يحتوي النموذج على 36.3 مليون باراميتر.") | |
| gr.HTML(footer()) | |
| with gr.Tab("ChatBot "): | |
| chatbot = gr.Chatbot( | |
| elem_id="chatbot", | |
| bubble_full_width=False, | |
| scale=1, | |
| ) | |
| chat_input = gr.MultimodalTextbox(interactive=True, | |
| file_count="single", | |
| placeholder="Enter message or upload file...", show_label=False,) | |
| chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot]) | |
| bot_msg = chat_msg.then(bot, [chatbot, chat_input], [chatbot, chat_input], api_name="bot_response") | |
| bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
| chatbot.like(print_like_dislike, None, None) | |
| # audio.change(chatbot_fn, [txt, audio], chatbot) | |
| with gr.Tab("Chat AI "): | |
| gr.Markdown("## AI: محادثة صوتية بالذكاء الاصطناعي باللهجة السعودية") | |
| with gr.Row(): # Arrange input/output components side-by-side | |
| with gr.Column(): | |
| text_input = gr.Textbox(label="أدخل أي نص") | |
| with gr.Column(): | |
| model_choices = gr.Dropdown( | |
| choices=[ | |
| "wasmdashai/vits-ar-sa", | |
| "wasmdashai/vits-ar-sa-huba", | |
| "wasmdashai/vits-ar-sa-ms", | |
| "wasmdashai/vits-ar-sa-A", | |
| "wasmdashai/vits-ar-sa-fahd", | |
| ], | |
| label="اختر النموذج", | |
| value="wasmdashai/vits-ar-sa-huba", | |
| ) | |
| with gr.Row(): | |
| btn = gr.Button("إرسال") | |
| btn_ai_only = gr.Button("توليد رد الذكاء الاصطناعي فقط") | |
| with gr.Row(): | |
| user_audio = gr.Audio(label="صوت المدخل") | |
| ai_audio = gr.Audio(label="رد AI الصوتي") | |
| ai_text = gr.Textbox(label="رد AI النصي") | |
| ai_audio2 = gr.Audio(label="2رد AI الصوتي",streaming=True) | |
| # Use a single button to trigger both functionalities | |
| def process_audio(text, model_choice, generate_user_audio=True): | |
| API_URL = f"https://api-inference.huggingface.co/models/{model_choice}" | |
| text_answer = get_answer_ai(text) | |
| text_answer = remove_extra_spaces(text_answer) | |
| data_ai = genrate_speech(text_answer,model_choice)#query(text_answer, API_URL) | |
| if generate_user_audio: # Generate user audio if needed | |
| data_user =genrate_speech(text,model_choice)# query(text, API_URL) | |
| return data_user, data_ai, text_answer | |
| else: | |
| return data_ai # Return None for user_audio | |
| btn.click( | |
| process_audio, # Call the combined function | |
| inputs=[text_input, model_choices], | |
| outputs=[user_audio, ai_audio, ai_text], | |
| ) | |
| # | |
| btn_ai_only.click( | |
| generate_audio_ai, | |
| inputs=[text_input, model_choices], | |
| outputs=[ai_audio2], | |
| ) | |
| with gr.Tab("Live "): | |
| gr.Markdown("## VITS: تحويل النص إلى كلام") | |
| with gr.Row(): | |
| speaker_id_input = gr.Number(label="معرّف المتحدث (اختياري)", interactive=True) | |
| with gr.Column(): | |
| model_choices2 = gr.Dropdown( | |
| choices=[ | |
| "wasmdashai/vits-ar-sa", | |
| "wasmdashai/vits-ar-sa-huba", | |
| "wasmdashai/vits-ar-sa-ms", | |
| "wasmdashai/vits-ar-sa-A", | |
| "wasmdashai/model-dash-fahd", | |
| ], | |
| label="اختر النموذج", | |
| value="wasmdashai/vits-ar-sa-huba", | |
| ) | |
| text_input = gr.Textbox(label="أدخل النص هنا") | |
| generate_button = gr.Button("توليد وتشغيل الصوت") | |
| audio_player = gr.Audio(label="أ audio",streaming=True) | |
| # Update the event binding | |
| generate_button.click(generate_audio, inputs=[text_input,model_choices2], outputs=audio_player) | |
| with gr.Tab("T2T "): | |
| gr.Markdown("## T2T") | |
| text_inputk = gr.Textbox(label="أدخل النص هنا") | |
| text_out = gr.Textbox() | |
| text_inputk.submit(t2t, [text_inputk], [text_out]) | |
| with gr.Tab("T2TSTREAM "): | |
| gr.Markdown("## T2TSTREAM ") | |
| text_inputk2 = gr.Textbox(label="أدخل النص هنا") | |
| text_out1 = gr.Textbox() | |
| text_inputk2.submit(t2tstream, [text_inputk2], [text_out1]) | |
| with gr.Tab("T2S "): | |
| gr.Markdown("## T2S ") | |
| model_choices3 = gr.Dropdown( | |
| choices=[ | |
| "wasmdashai/vits-ar-sa-huba-v1", | |
| "wasmdashai/vits-ar-sa-huba", | |
| "wasmdashai/vits-ar-sa-ms", | |
| "wasmdashai/vits-ar-sa-A", | |
| "wasmdashai/vits-ar-sa-huba-v2", | |
| ], | |
| label="اختر النموذج", | |
| value="wasmdashai/vits-ar-sa-huba", | |
| ) | |
| text_inputk3 = gr.Textbox(label="أدخل النص هنا") | |
| oudio_out1 =gr.Audio() | |
| text_inputk3.submit(t2s, [text_inputk3,model_choices3], [oudio_out1]) | |
| if __name__ == "__main__": | |
| demo.launch(show_error=True) | |