File size: 4,736 Bytes
3c5f9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e952d
 
3c5f9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e952d
3c5f9fa
 
 
 
 
 
 
 
 
 
 
f4e952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5f9fa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ViT_bean_leaves_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ViT_bean_leaves_model

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0320
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.0335        | 0.0769 | 10   | 0.9775          | 0.6165   |
| 0.8744        | 0.1538 | 20   | 0.8419          | 0.8647   |
| 0.7576        | 0.2308 | 30   | 0.6803          | 0.9248   |
| 0.5918        | 0.3077 | 40   | 0.5376          | 0.9624   |
| 0.4833        | 0.3846 | 50   | 0.4257          | 0.9699   |
| 0.3873        | 0.4615 | 60   | 0.3395          | 0.9624   |
| 0.3508        | 0.5385 | 70   | 0.2656          | 0.9774   |
| 0.3008        | 0.6154 | 80   | 0.2369          | 0.9549   |
| 0.2282        | 0.6923 | 90   | 0.1895          | 0.9925   |
| 0.204         | 0.7692 | 100  | 0.1596          | 0.9699   |
| 0.213         | 0.8462 | 110  | 0.1350          | 0.9925   |
| 0.1618        | 0.9231 | 120  | 0.1679          | 0.9624   |
| 0.1657        | 1.0    | 130  | 0.1061          | 0.9925   |
| 0.0997        | 1.0769 | 140  | 0.1020          | 0.9925   |
| 0.1185        | 1.1538 | 150  | 0.0892          | 0.9925   |
| 0.1329        | 1.2308 | 160  | 0.0903          | 1.0      |
| 0.0671        | 1.3077 | 170  | 0.0767          | 1.0      |
| 0.0634        | 1.3846 | 180  | 0.0696          | 0.9925   |
| 0.0618        | 1.4615 | 190  | 0.0631          | 1.0      |
| 0.0896        | 1.5385 | 200  | 0.0687          | 0.9925   |
| 0.0519        | 1.6154 | 210  | 0.0641          | 0.9925   |
| 0.052         | 1.6923 | 220  | 0.0580          | 0.9925   |
| 0.049         | 1.7692 | 230  | 0.0707          | 0.9925   |
| 0.1221        | 1.8462 | 240  | 0.0723          | 0.9925   |
| 0.0798        | 1.9231 | 250  | 0.0645          | 0.9850   |
| 0.043         | 2.0    | 260  | 0.0590          | 0.9925   |
| 0.0461        | 2.0769 | 270  | 0.0549          | 0.9850   |
| 0.0391        | 2.1538 | 280  | 0.0626          | 0.9925   |
| 0.0368        | 2.2308 | 290  | 0.0612          | 0.9925   |
| 0.0357        | 2.3077 | 300  | 0.0510          | 0.9925   |
| 0.035         | 2.3846 | 310  | 0.0448          | 1.0      |
| 0.0339        | 2.4615 | 320  | 0.0437          | 1.0      |
| 0.0352        | 2.5385 | 330  | 0.0454          | 0.9925   |
| 0.0315        | 2.6154 | 340  | 0.0457          | 0.9925   |
| 0.1151        | 2.6923 | 350  | 0.0390          | 1.0      |
| 0.0324        | 2.7692 | 360  | 0.0386          | 1.0      |
| 0.0298        | 2.8462 | 370  | 0.0370          | 1.0      |
| 0.0316        | 2.9231 | 380  | 0.0363          | 1.0      |
| 0.0295        | 3.0    | 390  | 0.0363          | 1.0      |
| 0.0284        | 3.0769 | 400  | 0.0363          | 1.0      |
| 0.0278        | 3.1538 | 410  | 0.0357          | 1.0      |
| 0.0296        | 3.2308 | 420  | 0.0352          | 1.0      |
| 0.0299        | 3.3077 | 430  | 0.0348          | 1.0      |
| 0.0277        | 3.3846 | 440  | 0.0351          | 1.0      |
| 0.0301        | 3.4615 | 450  | 0.0331          | 1.0      |
| 0.0281        | 3.5385 | 460  | 0.0328          | 1.0      |
| 0.0279        | 3.6154 | 470  | 0.0325          | 1.0      |
| 0.0283        | 3.6923 | 480  | 0.0324          | 1.0      |
| 0.0278        | 3.7692 | 490  | 0.0323          | 1.0      |
| 0.0286        | 3.8462 | 500  | 0.0322          | 1.0      |
| 0.0267        | 3.9231 | 510  | 0.0321          | 1.0      |
| 0.0276        | 4.0    | 520  | 0.0320          | 1.0      |


### Framework versions

- Transformers 4.57.2
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1