danielhanchen commited on
Commit
46ce7cc
·
verified ·
1 Parent(s): af2f549

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: health-ai-developer-foundations
4
+ license_link: https://developers.google.com/health-ai-developer-foundations/terms
5
+ library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ extra_gated_heading: Access MedGemma on Hugging Face
8
+ extra_gated_prompt: >-
9
+ To access MedGemma on Hugging Face, you're required to review and
10
+ agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
11
+ To do this, please ensure you're logged in to Hugging Face and click below.
12
+ Requests are processed immediately.
13
+ extra_gated_button_content: Acknowledge license
14
+ base_model:
15
+ - google/medgemma-4b-it
16
+ tags:
17
+ - medical
18
+ - unsloth
19
+ - radiology
20
+ - clinical-reasoning
21
+ - dermatology
22
+ - pathology
23
+ - ophthalmology
24
+ - chest-x-ray
25
+ ---
26
+ <div>
27
+ <p style="margin-top: 0;margin-bottom: 0;">
28
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
29
+ </p>
30
+ <div style="display: flex; gap: 5px; align-items: center; ">
31
+ <a href="https://github.com/unslothai/unsloth/">
32
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
33
+ </a>
34
+ <a href="https://discord.gg/unsloth">
35
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
36
+ </a>
37
+ <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">
38
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
39
+ </a>
40
+ </div>
41
+ </div>
42
+
43
+
44
+ # MedGemma model card
45
+
46
+ **Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma)
47
+
48
+ **Resources:**
49
+
50
+ * Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma)
51
+ * Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)
52
+ * GitHub repository (supporting code, Colab notebooks, discussions, and
53
+ issues): [MedGemma](https://github.com/google-health/medgemma)
54
+ * Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb)
55
+ * Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb)
56
+ * [Patient Education Demo built using MedGemma](https://huggingface.co/spaces/google/rad_explain)
57
+ * Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact)
58
+ * License: The use of MedGemma is governed by the [Health AI Developer
59
+ Foundations terms of
60
+ use](https://developers.google.com/health-ai-developer-foundations/terms).
61
+
62
+ **Author:** Google
63
+
64
+ ## Model information
65
+
66
+ This section describes the MedGemma model and how to use it.
67
+
68
+ ### Description
69
+
70
+ MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core)
71
+ variants that are trained for performance on medical text and image
72
+ comprehension. Developers can use MedGemma to accelerate building
73
+ healthcare-based AI applications. MedGemma currently comes in two variants: a 4B
74
+ multimodal version and a 27B text-only version.
75
+
76
+ MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
77
+ that has been specifically pre-trained on a variety of de-identified medical
78
+ data, including chest X-rays, dermatology images, ophthalmology images, and
79
+ histopathology slides. Its LLM component is trained on a diverse set of medical
80
+ data, including radiology images, histopathology patches, ophthalmology images,
81
+ and dermatology images.
82
+
83
+ MedGemma 4B is available in both pre-trained (suffix: `-pt`) and
84
+ instruction-tuned (suffix `-it`) versions. The instruction-tuned version is a
85
+ better starting point for most applications. The pre-trained version notably
86
+ achieves better performance on MIMIC-style chest X-ray reporting.
87
+
88
+ MedGemma 27B has been trained exclusively on medical text and optimized for
89
+ inference-time computation. MedGemma 27B is only available as an
90
+ instruction-tuned model.
91
+
92
+ MedGemma variants have been evaluated on a range of clinically relevant
93
+ benchmarks to illustrate their baseline performance. These include both open
94
+ benchmark datasets and curated datasets. Developers can fine-tune MedGemma
95
+ variants for improved performance. Consult the Intended Use section below for
96
+ more details.
97
+
98
+ A full technical report will be available soon.
99
+
100
+ ### How to use
101
+
102
+ Below are some example code snippets to help you quickly get started running the
103
+ model locally on GPU. If you want to use the model at scale, we recommend that
104
+ you create a production version using [Model
105
+ Garden](https://cloud.google.com/model-garden).
106
+
107
+
108
+ First, install the Transformers library. Gemma 3 is supported starting from
109
+ transformers 4.50.0.
110
+
111
+ ```sh
112
+ $ pip install -U transformers
113
+ ```
114
+
115
+ First, install the Transformers library. Gemma 3 is supported starting from
116
+ transformers 4.50.0.
117
+
118
+ ```sh
119
+ $ pip install -U transformers
120
+ ```
121
+
122
+ **Run model with the `pipeline` API**
123
+
124
+ ```python
125
+ from transformers import pipeline
126
+ from PIL import Image
127
+ import requests
128
+ import torch
129
+
130
+ pipe = pipeline(
131
+ "image-text-to-text",
132
+ model="google/medgemma-4b-it",
133
+ torch_dtype=torch.bfloat16,
134
+ device="cuda",
135
+ )
136
+
137
+ # Image attribution: Stillwaterising, CC0, via Wikimedia Commons
138
+ image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
139
+ image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
140
+
141
+ messages = [
142
+ {
143
+ "role": "system",
144
+ "content": [{"type": "text", "text": "You are an expert radiologist."}]
145
+ },
146
+ {
147
+ "role": "user",
148
+ "content": [
149
+ {"type": "text", "text": "Describe this X-ray"}
150
+ {"type": "image", "image": image},
151
+ ]
152
+ }
153
+ ]
154
+
155
+ output = pipe(text=messages, max_new_tokens=200)
156
+ print(output[0]["generated_text"][-1]["content"])
157
+ ```
158
+
159
+ **Run the model directly**
160
+
161
+ ```python
162
+ # pip install accelerate
163
+ from transformers import AutoProcessor, AutoModelForImageTextToText
164
+ from PIL import Image
165
+ import requests
166
+ import torch
167
+
168
+ model_id = "google/medgemma-4b-it"
169
+
170
+ model = AutoModelForImageTextToText.from_pretrained(
171
+ model_id,
172
+ torch_dtype=torch.bfloat16,
173
+ device_map="auto",
174
+ )
175
+ processor = AutoProcessor.from_pretrained(model_id)
176
+
177
+ # Image attribution: Stillwaterising, CC0, via Wikimedia Commons
178
+ image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
179
+ image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
180
+
181
+ messages = [
182
+ {
183
+ "role": "system",
184
+ "content": [{"type": "text", "text": "You are an expert radiologist."}]
185
+ },
186
+ {
187
+ "role": "user",
188
+ "content": [
189
+ {"type": "text", "text": "Describe this X-ray"},
190
+ {"type": "image", "image": image}
191
+ ]
192
+ }
193
+ ]
194
+
195
+ inputs = processor.apply_chat_template(
196
+ messages, add_generation_prompt=True, tokenize=True,
197
+ return_dict=True, return_tensors="pt"
198
+ ).to(model.device, dtype=torch.bfloat16)
199
+
200
+ input_len = inputs["input_ids"].shape[-1]
201
+
202
+ with torch.inference_mode():
203
+ generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
204
+ generation = generation[0][input_len:]
205
+
206
+ decoded = processor.decode(generation, skip_special_tokens=True)
207
+ print(decoded)
208
+ ```
209
+
210
+ ### Examples
211
+
212
+ See the following Colab notebooks for examples of how to use MedGemma:
213
+
214
+ * To give the model a quick try, running it locally with weights from Hugging
215
+ Face, see [Quick start notebook in
216
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb). Note that you will need to use Colab
217
+ Enterprise to run the 27B model without quantization.
218
+
219
+ * For an example of fine-tuning the model, see the [Fine-tuning notebook in
220
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb).
221
+
222
+ ### Model architecture overview
223
+
224
+ The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and
225
+ uses the same decoder-only transformer architecture as Gemma 3. To read more
226
+ about the architecture, consult the Gemma 3 [model
227
+ card](https://ai.google.dev/gemma/docs/core/model_card_3).
228
+
229
+ ### Technical specifications
230
+
231
+ * **Model type**: Decoder-only Transformer architecture, see the [Gemma 3
232
+ technical
233
+ report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf)
234
+ * **Modalities**: **4B**: Text, vision; **27B**: Text only
235
+ * **Attention mechanism**: Utilizes grouped-query attention (GQA)
236
+ * **Context length**: Supports long context, at least 128K tokens
237
+ * **Key publication**: Coming soon
238
+ * **Model created**: May 20, 2025
239
+ * **Model version**: 1.0.0
240
+
241
+ ### Citation
242
+
243
+ A technical report is coming soon. In the meantime, if you publish using this
244
+ model, please cite the Hugging Face model page:
245
+
246
+ ```none
247
+ @misc{medgemma-hf,
248
+ author = {Google},
249
+ title = {MedGemma Hugging Face}
250
+ howpublished = {\url{https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4}},
251
+ year = {2025},
252
+ note = {Accessed: [Insert Date Accessed, e.g., 2025-05-20]}
253
+ }
254
+ ```
255
+
256
+ ### Inputs and outputs
257
+
258
+ **Input**:
259
+
260
+ * Text string, such as a question or prompt
261
+ * Images, normalized to 896 x 896 resolution and encoded to 256 tokens each
262
+ * Total input length of 128K tokens
263
+
264
+ **Output**:
265
+
266
+ * Generated text in response to the input, such as an answer to a question,
267
+ analysis of image content, or a summary of a document
268
+ * Total output length of 8192 tokens
269
+
270
+ ### Performance and validation
271
+
272
+ MedGemma was evaluated across a range of different multimodal classification,
273
+ report generation, visual question answering, and text-based tasks.
274
+
275
+ ### Key performance metrics
276
+
277
+ #### Imaging evaluations
278
+
279
+ The multimodal performance of MedGemma 4B was evaluated across a range of
280
+ benchmarks, focusing on radiology, dermatology, histopathology, ophthalmology,
281
+ and multimodal clinical reasoning.
282
+
283
+ MedGemma 4B outperforms the base Gemma 3 4B model across all tested multimodal
284
+ health benchmarks.
285
+
286
+ | Task and metric | MedGemma 4B | Gemma 3 4B |
287
+ | :---- | :---- | :---- |
288
+ | **Medical image classification** | | |
289
+ | MIMIC CXR \- Average F1 for top 5 conditions | 88.9 | 81.1 |
290
+ | CheXpert CXR \- Average F1 for top 5 conditions | 48.1 | 31.2 |
291
+ | DermMCQA\* \- Accuracy | 71.8 | 42.6 |
292
+ | **Visual question answering** | | |
293
+ | SlakeVQA (radiology) \- Tokenized F1 | 62.3 | 38.6 |
294
+ | VQA-Rad\*\* (radiology) \- Tokenized F1 | 49.9 | 38.6 |
295
+ | PathMCQA (histopathology, internal\*\*\*) \- Accuracy | 69.8 | 37.1 |
296
+ | **Knowledge and reasoning** | | |
297
+ | MedXpertQA (text \+ multimodal questions) \- Accuracy | 18.8 | 16.4 |
298
+
299
+ *Based on [ref](https://www.nature.com/articles/s41591-020-0842-3), presented as
300
+ a 4-way MCQ per example for skin condition classification.
301
+
302
+ **On balanced split, see [ref](https://arxiv.org/pdf/2405.03162).
303
+
304
+ ***Based on multiple datasets, presented as 3-9 way MCQ per example for
305
+ identification, grading, and subtype for breast, cervical, and prostate cancer.
306
+
307
+ #### Chest X-ray report generation
308
+
309
+ MedGemma chest X-ray (CXR) report generation performance was evaluated on
310
+ [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/) using the [RadGraph
311
+ F1 metric](https://arxiv.org/abs/2106.14463). We compare the MedGemma
312
+ pre-trained checkpoint with our previous best model for CXR report generation,
313
+ [PaliGemma 2](https://arxiv.org/abs/2412.03555).
314
+
315
+ | Metric | MedGemma 4B (pre-trained) | PaliGemma 2 3B (tuned for CXR) | PaliGemma 2 10B (tuned for CXR) |
316
+ | :---- | :---- | :---- | :---- |
317
+ | **Chest X-ray report generation** | | | |
318
+ | MIMIC CXR \- RadGraph F1 | 29.5 | 28.8 | 29.5 |
319
+
320
+ The instruction-tuned versions of MedGemma 4B and Gemma 3 4B achieve lower
321
+ scores (0.22 and 0.12, respectively) due to the differences in reporting style
322
+ compared to the MIMIC ground truth reports. Further fine-tuning on MIMIC reports
323
+ will enable users to achieve improved performance.
324
+
325
+ #### Text evaluations
326
+
327
+ MedGemma 4B and text-only MedGemma 27B were evaluated across a range of
328
+ text-only benchmarks for medical knowledge and reasoning.
329
+
330
+ The MedGemma models outperform their respective base Gemma models across all
331
+ tested text-only health benchmarks.
332
+
333
+ | Metric | MedGemma 27B | Gemma 3 27B | MedGemma 4B | Gemma 3 4B |
334
+ | :---- | :---- | :---- | :---- | :---- |
335
+ | MedQA (4-op) | 89.8 (best-of-5) 87.7 (0-shot) | 74.9 | 64.4 | 50.7 |
336
+ | MedMCQA | 74.2 | 62.6 | 55.7 | 45.4 |
337
+ | PubMedQA | 76.8 | 73.4 | 73.4 | 68.4 |
338
+ | MMLU Med (text only) | 87.0 | 83.3 | 70.0 | 67.2 |
339
+ | MedXpertQA (text only) | 26.7 | 15.7 | 14.2 | 11.6 |
340
+ | AfriMed-QA | 84.0 | 72.0 | 52.0 | 48.0 |
341
+
342
+ For all MedGemma 27B results, [test-time
343
+ scaling](https://arxiv.org/abs/2501.19393) is used to improve performance.
344
+
345
+ ### Ethics and safety evaluation
346
+
347
+ #### Evaluation approach
348
+
349
+ Our evaluation methods include structured evaluations and internal red-teaming
350
+ testing of relevant content policies. Red-teaming was conducted by a number of
351
+ different teams, each with different goals and human evaluation metrics. These
352
+ models were evaluated against a number of different categories relevant to
353
+ ethics and safety, including:
354
+
355
+ * **Child safety**: Evaluation of text-to-text and image-to-text prompts
356
+ covering child safety policies, including child sexual abuse and
357
+ exploitation.
358
+ * **Content safety:** Evaluation of text-to-text and image-to-text prompts
359
+ covering safety policies, including harassment, violence and gore, and hate
360
+ speech.
361
+ * **Representational harms**: Evaluation of text-to-text and image-to-text
362
+ prompts covering safety policies, including bias, stereotyping, and harmful
363
+ associations or inaccuracies.
364
+ * **General medical harms:** Evaluation of text-to-text and image-to-text
365
+ prompts covering safety policies, including information quality and harmful
366
+ associations or inaccuracies.
367
+
368
+ In addition to development level evaluations, we conduct "assurance evaluations"
369
+ which are our "arms-length" internal evaluations for responsibility governance
370
+ decision making. They are conducted separately from the model development team,
371
+ to inform decision making about release. High-level findings are fed back to the
372
+ model team, but prompt sets are held out to prevent overfitting and preserve the
373
+ results' ability to inform decision making. Notable assurance evaluation results
374
+ are reported to our Responsibility & Safety Council as part of release review.
375
+
376
+ #### Evaluation results
377
+
378
+ For all areas of safety testing, we saw safe levels of performance across the
379
+ categories of child safety, content safety, and representational harms. All
380
+ testing was conducted without safety filters to evaluate the model capabilities
381
+ and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
382
+ both MedGemma model sizes, the model produced minimal policy violations. A
383
+ limitation of our evaluations was that they included primarily English language
384
+ prompts.
385
+
386
+ ## Data card
387
+
388
+ ### Dataset overview
389
+
390
+ #### Training
391
+
392
+ The base Gemma models are pre-trained on a large corpus of text and code data.
393
+ MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
394
+ that has been specifically pre-trained on a variety of de-identified medical
395
+ data, including radiology images, histopathology images, ophthalmology images,
396
+ and dermatology images. Its LLM component is trained on a diverse set of medical
397
+ data, including medical text relevant to radiology images, chest-x rays,
398
+ histopathology patches, ophthalmology images and dermatology images.
399
+
400
+ #### Evaluation
401
+
402
+ MedGemma models have been evaluated on a comprehensive set of clinically
403
+ relevant benchmarks, including over 22 datasets across 5 different tasks and 6
404
+ medical image modalities. These include both open benchmark datasets and curated
405
+ datasets, with a focus on expert human evaluations for tasks like CXR report
406
+ generation and radiology VQA.
407
+
408
+ #### Source
409
+
410
+ MedGemma utilizes a combination of public and private datasets.
411
+
412
+ This model was trained on diverse public datasets including MIMIC-CXR (chest
413
+ X-rays and reports), Slake-VQA (multimodal medical images and questions),
414
+ PAD-UFES-20 (skin lesion images and data), SCIN (dermatology images), TCGA
415
+ (cancer genomics data), CAMELYON (lymph node histopathology images), PMC-OA
416
+ (biomedical literature with images), and Mendeley Digital Knee X-Ray (knee
417
+ X-rays).
418
+
419
+ Additionally, multiple diverse proprietary datasets were licensed and
420
+ incorporated (described next).
421
+
422
+ ### Data Ownership and Documentation
423
+
424
+ * [Mimic-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory
425
+ for Computational Physiology and Beth Israel Deaconess Medical Center
426
+ (BIDMC).
427
+ * [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic
428
+ University (PolyU), with collaborators including West China Hospital of
429
+ Sichuan University and Sichuan Academy of Medical Sciences / Sichuan
430
+ Provincial People's Hospital.
431
+ * [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal
432
+ University of Espírito Santo (UFES), Brazil, through its Dermatological and
433
+ Surgical Assistance Program (PAD).
434
+ * [SCIN](https://github.com/google-research-datasets/scin): A collaboration
435
+ between Google Health and Stanford Medicine.
436
+ * [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint
437
+ effort of National Cancer Institute and National Human Genome Research
438
+ Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
439
+ * [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was
440
+ collected from Radboud University Medical Center and University Medical
441
+ Center Utrecht in the Netherlands.
442
+ * [PMC-OA (PubMed Central Open Access
443
+ Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa):
444
+ Maintained by the National Library of Medicine (NLM) and National Center for
445
+ Biotechnology Information (NCBI), which are part of the NIH.
446
+ * [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a
447
+ team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung
448
+ Weng, Hanyi Fang, and Peter Szolovits
449
+ * [Mendeley Digital Knee
450
+ X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is
451
+ from Rani Channamma University, and is hosted on Mendeley Data.
452
+ * [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by
453
+ multiple collaborating organizations and researchers include key
454
+ contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of
455
+ Technology, and MasakhaneNLP.
456
+ * [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was
457
+ created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben
458
+ Abacha, and Dina Demner-Fushman and their affiliated institutions (the US
459
+ National Library of Medicine and National Institutes of Health)
460
+ * [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805):
461
+ This dataset was created by researchers at the HiTZ Center (Basque Center
462
+ for Language Technology and Artificial Intelligence).
463
+ * [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This
464
+ dataset was developed by researchers at Tsinghua University (Beijing, China)
465
+ and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
466
+
467
+ In addition to the public datasets listed above, MedGemma was also trained on
468
+ de-identified datasets licensed for research or collected internally at Google
469
+ from consented participants.
470
+
471
+ * Radiology dataset 1: De-identified dataset of different CT studies across
472
+ body parts from a US-based radiology outpatient diagnostic center network.
473
+ * Ophthalmology dataset 1: De-identified dataset of fundus images from
474
+ diabetic retinopathy screening.
475
+ * Dermatology dataset 1: De-identified dataset of teledermatology skin
476
+ condition images (both clinical and dermatoscopic) from Colombia.
477
+ * Dermatology dataset 2: De-identified dataset of skin cancer images (both
478
+ clinical and dermatoscopic) from Australia.
479
+ * Dermatology dataset 3: De-identified dataset of non-diseased skin images
480
+ from an internal data collection effort.
481
+ * Pathology dataset 1: De-identified dataset of histopathology H&E whole slide
482
+ images created in collaboration with an academic research hospital and
483
+ biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes.
484
+ * Pathology dataset 2: De-identified dataset of lung histopathology H&E and
485
+ IHC whole slide images created by a commercial biobank in the United States.
486
+ * Pathology dataset 3: De-identified dataset of prostate and lymph node H&E
487
+ and IHC histopathology whole slide images created by a contract research
488
+ organization in the United States.
489
+ * Pathology dataset 4: De-identified dataset of histopathology, predominantly
490
+ H\&E whole slide images created in collaboration with a large, tertiary
491
+ teaching hospital in the United States. Comprises a diverse set of tissue
492
+ and stain types, predominantly H&E.
493
+
494
+ ### Data citation
495
+
496
+ * MIMIC-CXR Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng, S.
497
+ (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet.
498
+ * Johnson, A.E.W., Pollard, T.J., Berkowitz, S.J. et al. [MIMIC-CXR, a
499
+ de-identified publicly available database of chest radiographs with
500
+ free-text reports. Sci Data 6, 317
501
+ (2019).](https://doi.org/10.1038/s41597-019-0322-0)
502
+ * Available on Physionet Goldberger, A., Amaral, L., Glass, L., Hausdorff, J.,
503
+ Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). [PhysioBank,
504
+ PhysioToolkit, and PhysioNet: Components of a new research resource for
505
+ complex physiologic signals. Circulation \[Online\]. 101 (23), pp.
506
+ E215–e220.](https://pubmed.ncbi.nlm.nih.gov/10851218/)
507
+ * Bo Liu, Li-Ming Zhan, etc. [SLAKE: A Semantically-Labeled Knowledge-Enhanced
508
+ Dataset for Medical Visual Question
509
+ Answering](https://arxiv.org/abs/2102.09542).
510
+ * [PAD-UFES-20: A skin lesion dataset composed of patient data and clinical
511
+ images collected from
512
+ smartphones](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/)
513
+ * [The Cancer Genome Atlas Program (TCGA)](https://www.cancer.gov/ccg/research/genome-sequencing/tcga)
514
+ * Babak Ehteshami Bejnordi, etc.: [Diagnostic Assessment of Deep Learning
515
+ Algorithms for Detection of Lymph Node Metastases in Women With Breast
516
+ Cancer](https://jamanetwork.com/journals/jama/fullarticle/2665774)
517
+ * MedQA: [https://arxiv.org/abs/2009.13081](https://arxiv.org/abs/2009.13081)
518
+ * Mendeley Digital Knee X-Ray: Gornale, Shivanand; Patravali, Pooja (2020),
519
+ "Digital Knee X-ray Images", Mendeley Data, V1, doi: 10.17632/t9ndx37v5h.1
520
+ * AfriMed-QA: [https://arxiv.org/abs/2411.15640](https://arxiv.org/abs/2411.15640)
521
+ * VQA-RAD: [Lau, J., Gayen, S., Ben Abacha, A. et al. A dataset of clinically
522
+ generated visual questions and answers about radiology images. Sci Data 5,
523
+ 180251 (2018).
524
+ https://doi.org/10.1038/sdata.2018.251](https://doi.org/10.1038/sdata.2018.251)
525
+ * [MedExpQA: Multilingual benchmarking of Large Language Models for
526
+ Medical Question
527
+ Answering](https://www.sciencedirect.com/science/article/pii/S0933365724001805)
528
+ * MedXpertQA: [arXiv:2501.18362v2](https://arxiv.org/abs/2501.18362)
529
+
530
+ ### De-identification/anonymization:
531
+
532
+ Google and partnerships utilize datasets that have been rigorously anonymized or
533
+ de-identified to ensure the protection of individual research participants and
534
+ patient privacy
535
+
536
+ ## Implementation information
537
+
538
+ Details about the model internals.
539
+
540
+ ### Software
541
+
542
+ Training was done using [JAX](https://github.com/jax-ml/jax).
543
+
544
+ JAX allows researchers to take advantage of the latest generation of hardware,
545
+ including TPUs, for faster and more efficient training of large models.
546
+
547
+ ## Use and limitations
548
+
549
+ ### Intended use
550
+
551
+ MedGemma is an open multimodal generative AI model intended to be used as a
552
+ starting point that enables more efficient development of downstream healthcare
553
+ applications involving medical text and images. MedGemma is intended for
554
+ developers in the life sciences and healthcare space. Developers are responsible
555
+ for training, adapting and making meaningful changes to MedGemma to accomplish
556
+ their specific intended use. MedGemma models can be fine-tuned by developers
557
+ using their own proprietary data for their specific tasks or solutions.
558
+
559
+ MedGemma is based on Gemma 3 and has been further trained on medical images and
560
+ text. MedGemma enables further development in any medical context (image and
561
+ textual), however the model was pre-trained using chest X-ray, pathology,
562
+ dermatology, and fundus images. Examples of tasks within MedGemma's training
563
+ include visual question answering pertaining to medical images, such as
564
+ radiographs, or providing answers to textual medical questions. Full details of
565
+ all the tasks MedGemma has been evaluated can be found in an upcoming technical
566
+ report.
567
+
568
+ ### Benefits
569
+
570
+ * Provides strong baseline medical image and text comprehension for models of
571
+ its size.
572
+ * This strong performance makes it efficient to adapt for downstream
573
+ healthcare-based use cases, compared to models of similar size without
574
+ medical data pre-training.
575
+ * This adaptation may involve prompt engineering, grounding, agentic
576
+ orchestration or fine-tuning depending on the use case, baseline validation
577
+ requirements, and desired performance characteristics.
578
+
579
+ ### Limitations
580
+
581
+ MedGemma is not intended to be used without appropriate validation, adaptation
582
+ and/or making meaningful modification by developers for their specific use case.
583
+ The outputs generated by MedGemma are not intended to directly inform clinical
584
+ diagnosis, patient management decisions, treatment recommendations, or any other
585
+ direct clinical practice applications. Performance benchmarks highlight baseline
586
+ capabilities on relevant benchmarks, but even for image and text domains that
587
+ constitute a substantial portion of training data, inaccurate model output is
588
+ possible. All outputs from MedGemma should be considered preliminary and require
589
+ independent verification, clinical correlation, and further investigation
590
+ through established research and development methodologies.
591
+
592
+ MedGemma's multimodal capabilities have been primarily evaluated on single-image
593
+ tasks. MedGemma has not been evaluated in use cases that involve comprehension
594
+ of multiple images.
595
+
596
+ MedGemma has not been evaluated or optimized for multi-turn applications.
597
+
598
+ MedGemma's training may make it more sensitive to the specific prompt used than
599
+ Gemma 3.
600
+
601
+ When adapting MedGemma developer should consider the following:
602
+
603
+ * **Bias in validation data:** As with any research, developers should ensure
604
+ that any downstream application is validated to understand performance using
605
+ data that is appropriately representative of the intended use setting for
606
+ the specific application (e.g., age, sex, gender, condition, imaging device,
607
+ etc).
608
+ * **Data contamination concerns**: When evaluating the generalization
609
+ capabilities of a large model like MedGemma in a medical context, there is a
610
+ risk of data contamination, where the model might have inadvertently seen
611
+ related medical information during its pre-training, potentially
612
+ overestimating its true ability to generalize to novel medical concepts.
613
+ Developers should validate MedGemma on datasets not publicly available or
614
+ otherwise made available to non-institutional researchers to mitigate this
615
+ risk.
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"
3
+ }
config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForConditionalGeneration"
4
+ ],
5
+ "boi_token_index": 255999,
6
+ "bos_token_id": 2,
7
+ "eoi_token_index": 256000,
8
+ "eos_token_id": 106,
9
+ "image_token_index": 262144,
10
+ "initializer_range": 0.02,
11
+ "mm_tokens_per_image": 256,
12
+ "model_type": "gemma3",
13
+ "pad_token_id": 0,
14
+ "text_config": {
15
+ "attention_bias": false,
16
+ "attention_dropout": 0.0,
17
+ "attn_logit_softcapping": null,
18
+ "cache_implementation": "hybrid",
19
+ "final_logit_softcapping": null,
20
+ "head_dim": 256,
21
+ "hidden_activation": "gelu_pytorch_tanh",
22
+ "hidden_size": 2560,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 10240,
25
+ "max_position_embeddings": 131072,
26
+ "model_type": "gemma3_text",
27
+ "num_attention_heads": 8,
28
+ "num_hidden_layers": 34,
29
+ "num_key_value_heads": 4,
30
+ "query_pre_attn_scalar": 256,
31
+ "rms_norm_eps": 1e-06,
32
+ "rope_local_base_freq": 10000,
33
+ "rope_scaling": {
34
+ "factor": 8.0,
35
+ "rope_type": "linear"
36
+ },
37
+ "rope_theta": 1000000,
38
+ "sliding_window": 1024,
39
+ "sliding_window_pattern": 6,
40
+ "torch_dtype": "bfloat16",
41
+ "use_cache": true,
42
+ "vocab_size": 262208
43
+ },
44
+ "torch_dtype": "bfloat16",
45
+ "transformers_version": "4.51.3",
46
+ "unsloth_fixed": true,
47
+ "vision_config": {
48
+ "attention_dropout": 0.0,
49
+ "hidden_act": "gelu_pytorch_tanh",
50
+ "hidden_size": 1152,
51
+ "image_size": 896,
52
+ "intermediate_size": 4304,
53
+ "layer_norm_eps": 1e-06,
54
+ "model_type": "siglip_vision_model",
55
+ "num_attention_heads": 16,
56
+ "num_channels": 3,
57
+ "num_hidden_layers": 27,
58
+ "patch_size": 14,
59
+ "torch_dtype": "bfloat16",
60
+ "vision_use_head": false
61
+ }
62
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "pad_token_id": 0,
10
+ "top_k": 64,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.3"
13
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:359b85680f8fe50feedb13cb3d7044f6cd690a967b4c07cb0c24201b0ae7fd87
3
+ size 4961251752
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bed82e64597da81b1e663c59c4dae77df93edf8af95221054b541225d4f0313
3
+ size 3639026128
model.safetensors.index.json ADDED
@@ -0,0 +1,890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8600158944
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
86
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
90
+ "language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
147
+ "language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
148
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
149
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
150
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
179
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
180
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
182
+ "language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
184
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
187
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
188
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
189
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
190
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
191
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
192
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
193
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
194
+ "language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
197
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
198
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
199
+ "language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
200
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
201
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
202
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
203
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
204
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
205
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
206
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
207
+ "language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
208
+ "language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
210
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
211
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
212
+ "language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
218
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
219
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
220
+ "language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
222
+ "language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
223
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
224
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
263
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
264
+ "language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
265
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
266
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
267
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
268
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
269
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
270
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
271
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
285
+ "language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
286
+ "language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
291
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
294
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
295
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
296
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
307
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
308
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
309
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
310
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
311
+ "language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
314
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
315
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
316
+ "language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
317
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
318
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
340
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
341
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
342
+ "language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
343
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
344
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
345
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
346
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
347
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
348
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
349
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
350
+ "language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
351
+ "language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
353
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
354
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
355
+ "language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
356
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
357
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
358
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
359
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
360
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
361
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
362
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
363
+ "language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
364
+ "language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
365
+ "language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
366
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
367
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
368
+ "language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
369
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
370
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
371
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
406
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
407
+ "language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
408
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
409
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
410
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
411
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
412
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
413
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
414
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
415
+ "language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
418
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
419
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
420
+ "language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
421
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
422
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
423
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
424
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
425
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
426
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
427
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
430
+ "language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
431
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
432
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
433
+ "language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
434
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
435
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
436
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
437
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
438
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
439
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
440
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
442
+ "language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
443
+ "language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
444
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
445
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
446
+ "language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
447
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
448
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
449
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
450
+ "multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
451
+ "multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
452
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
453
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
454
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
455
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
731
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
732
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
733
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
734
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
735
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
736
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
737
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
738
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
739
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
740
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
741
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
742
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
743
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
744
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
745
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
746
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
747
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
748
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
749
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
750
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
751
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
752
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
753
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
754
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
755
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
756
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
757
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
758
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
759
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
760
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
761
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
762
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
763
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
764
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
765
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
766
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
767
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
768
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
769
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
770
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
771
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
772
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
773
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
774
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
775
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
776
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
777
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
778
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
779
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
780
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
781
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
782
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
783
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
784
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
785
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
786
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
787
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
788
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
789
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
790
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
791
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
792
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
793
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
794
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
795
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
796
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
797
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
798
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
799
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
800
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
801
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
802
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
803
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
804
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
805
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
806
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
807
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
808
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
809
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
810
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
811
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
812
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
813
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
814
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
815
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
816
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
817
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
818
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
819
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
820
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
821
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
822
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
823
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
824
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
825
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
826
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
827
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
828
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
829
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
830
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
831
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
832
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
833
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
834
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
835
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
836
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
837
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
838
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
839
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
840
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
841
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
842
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
843
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
844
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
845
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
846
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
847
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
848
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
849
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
850
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
851
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
852
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
853
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
854
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
855
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
856
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
857
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
858
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
859
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
860
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
861
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
862
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
863
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
864
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
865
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
866
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
867
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
868
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
869
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
870
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
871
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
872
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
873
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
874
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
875
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
876
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
877
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
878
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
879
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
880
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
881
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
882
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
883
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
884
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
885
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
886
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
887
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
888
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
889
+ }
890
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_pan_and_scan": null,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "Gemma3ImageProcessor",
13
+ "image_seq_length": 256,
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "pan_and_scan_max_num_crops": null,
20
+ "pan_and_scan_min_crop_size": null,
21
+ "pan_and_scan_min_ratio_to_activate": null,
22
+ "processor_class": "Gemma3Processor",
23
+ "resample": 2,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "height": 896,
27
+ "width": 896
28
+ }
29
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "Gemma3Processor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff