nielsr HF Staff commited on
Commit
4e8b6af
·
verified ·
1 Parent(s): 06ac7fd

Add comprehensive model card for SV-DRR

Browse files

This PR adds a comprehensive model card for SV-DRR, a high-fidelity novel view X-Ray synthesis model.

It includes:
- Relevant metadata: `pipeline_tag: image-to-image`, `library_name: diffusers`, and `license: apache-2.0`.
- A link to the paper: [SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model](https://huggingface.co/papers/2507.05148).
- A link to the code repository: https://github.com/xiechun298/SV-DRR.
- A detailed "Usage" section with Python/bash code snippets for inference, taken directly from the GitHub README.
- Visual demonstrations of the model's capabilities from the GitHub README.
- The official BibTeX citation.

This will improve discoverability and usability for researchers and practitioners on the Hugging Face Hub.

Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: diffusers
4
+ pipeline_tag: image-to-image
5
+ ---
6
+
7
+ # SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model
8
+
9
+ This model, presented in the paper [SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model](https://huggingface.co/papers/2507.05148), proposes a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation, enabling higher-resolution outputs with improved control over viewing angles.
10
+
11
+ Code: https://github.com/xiechun298/SV-DRR
12
+
13
+ <p align="center">
14
+ <img src="https://github.com/xiechun298/SV-DRR/assets/demo2.gif" alt="demo2.gif" width="500"/>
15
+ </p>
16
+
17
+ ## Visual Comparison with SOTA Methods
18
+ ![visulization](https://github.com/xiechun298/SV-DRR/assets/visulization.svg)
19
+
20
+ ## Usage
21
+
22
+ ### 🚀 Quick Start
23
+
24
+ #### 🛠️ Environment Setup
25
+
26
+ To ensure compatibility and reproducibility, follow these steps to set up the environment:
27
+
28
+ 1. **Clone the Repository**:
29
+ ```bash
30
+ git clone https://github.com/xiechun-tsukuba/svdrr.git
31
+ cd svdrr
32
+ ```
33
+
34
+ 2. **Create a Python Virtual Environment**:
35
+ ```bash
36
+ conda create -f environment.yaml
37
+ ```
38
+
39
+ #### ⏬ Download Pretrained Models
40
+
41
+ You can download the pretrained models by either:
42
+
43
+ **Option 1: Automated Download (Recommended)**
44
+ ```bash
45
+ python scripts/download_models.py
46
+ ```
47
+ This will download all models into the `models/` directory. Shared components will be stored in the `shared/` folder, and symbolic links will be created in each model folder accordingly.
48
+
49
+ **Option 2: Manual Download from Hugging Face**
50
+ - 256 resolution: https://huggingface.co/xiechun-tsukuba/svdrr-dit-fb-256
51
+ - 512 resolution: https://huggingface.co/xiechun-tsukuba/svdrr-dit-fb-512
52
+ - 1024 resolution: https://huggingface.co/xiechun-tsukuba/svdrr-dit-fb-1024
53
+
54
+ ### 🔍 Inference
55
+
56
+ **Important Note:** The coordinate system of LIDC-IDRI-DRR is opposite to the intuitive one — the polar angle increases downward, and the azimuth angle increases when rotating to the left. To invert the pose coordinate system, use the `--flip_pose` option.
57
+
58
+ #### Single Image Inference
59
+
60
+ **Default views (azimuth angles from -90° to 90° in 5° increments):**
61
+ ```bash
62
+ python test_svdrr_DiT.py --model_path models/DiT-fb-512 \
63
+ --image_path demo/real_xray.jpg \
64
+ --log_dir outputs/ \
65
+ --image_size 512 \
66
+ --simple_pose
67
+ ```
68
+
69
+ **User-specified views defined in camera_views.json:**
70
+ ```bash
71
+ python test_svdrr_DiT.py --model_path models/DiT-fb-512 \
72
+ --image_path demo/real_xray.jpg \
73
+ --log_dir outputs/ \
74
+ --image_size 512 \
75
+ --poses demo/camera_views.json
76
+ ```
77
+
78
+ #### Dataset Inference
79
+
80
+ **Perform inference on the LIDC-IDRI-DRR dataset:**
81
+ ```bash
82
+ python test_svdrr_DiT.py --model_path models/svdrr-DiT-fb-256 \
83
+ --dataset {path/to/dataset/} \
84
+ --log_dir outputs/ \
85
+ --image_size 256
86
+ ```
87
+
88
+ ## BibTex
89
+ If you find this work useful, a citation will be appreciated via:
90
+
91
+ ```bibtex
92
+ @InProceedings{XieChu_SVDRR_MICCAI2025,
93
+ author = { Xie, Chun AND Yoshii, Yuichi AND Kitahara, Itaru},
94
+ title = { { SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model } },
95
+ booktitle = {proceedings of Medical Image Computing and Computer Assisted Intervention -- MICCAI 2025},
96
+ year = {2025},
97
+ publisher = {Springer Nature Switzerland},
98
+ volume = {LNCS 15963},
99
+ month = {September},
100
+ page = {572 -- 582},
101
+ doi = {https://doi.org/10.1007/978-3-032-04965-0_54}
102
+ }
103
+
104
+ @misc{xie2025svdrr,
105
+ title = {SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model},
106
+ author = {Chun Xie and Yuichi Yoshii and Itaru Kitahara},
107
+ year = {2025},
108
+ eprint = {2507.05148},
109
+ archivePrefix = {arXiv},
110
+ doi = {https://doi.org/10.48550/arXiv.2507.05148},
111
+ }
112
+ ```