Yuwei Sun
commited on
Commit
·
d7774e6
1
Parent(s):
8f2dd3f
Upload FedKA-Digit-Five.ipynb
Browse files- FedKA-Digit-Five.ipynb +540 -0
FedKA-Digit-Five.ipynb
ADDED
|
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "LcO6E1lNBh1P"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"## 1. Import necessary packages"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {
|
| 16 |
+
"id": "dBaDYH8WBh1U"
|
| 17 |
+
},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import numpy as np\n",
|
| 21 |
+
"import tensorflow as tf\n",
|
| 22 |
+
"import scipy.io\n",
|
| 23 |
+
"from torch.utils.data import TensorDataset\n",
|
| 24 |
+
"from torch.utils.data import DataLoader\n",
|
| 25 |
+
"import torch\n",
|
| 26 |
+
"import matplotlib.pyplot as plt\n",
|
| 27 |
+
"import random\n",
|
| 28 |
+
"import os\n",
|
| 29 |
+
"import torch.backends.cudnn as cudnn\n",
|
| 30 |
+
"import torch.optim as optim\n",
|
| 31 |
+
"import torch.utils.data\n",
|
| 32 |
+
"from torchvision import datasets\n",
|
| 33 |
+
"from torchvision import transforms\n",
|
| 34 |
+
"import torch.nn as nn\n",
|
| 35 |
+
"from torch.autograd import Function\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"cudnn.benchmark = False\n",
|
| 38 |
+
"cudnn.deterministic = True\n",
|
| 39 |
+
"cuda = True\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"lr = 3e-4\n",
|
| 42 |
+
"batch_size = 16\n",
|
| 43 |
+
"image_size = 28\n",
|
| 44 |
+
"n_epoch = 200\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"def dataprocess(data, target):\n",
|
| 47 |
+
" data = torch.from_numpy(data).float()\n",
|
| 48 |
+
" target = torch.from_numpy(target).long() \n",
|
| 49 |
+
" dataset = TensorDataset(data, target)\n",
|
| 50 |
+
" trainloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
| 51 |
+
"\n",
|
| 52 |
+
" return trainloader"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "markdown",
|
| 57 |
+
"metadata": {
|
| 58 |
+
"id": "8n9FMTyTBh1U"
|
| 59 |
+
},
|
| 60 |
+
"source": [
|
| 61 |
+
"## 2. Prepare the datasets for clients (source) and the cloud (target)"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": null,
|
| 67 |
+
"metadata": {
|
| 68 |
+
"id": "Zocl_klGBh1V"
|
| 69 |
+
},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"mat = scipy.io.loadmat('Digit-Five/mnist_data.mat')\n",
|
| 73 |
+
"data = np.transpose((np.array((tf.image.grayscale_to_rgb(tf.convert_to_tensor(mat['train_28'])))).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2))\n",
|
| 74 |
+
"target = np.argmax((mat['label_train']), axis = 1)\n",
|
| 75 |
+
"c1_mt = [data, target]\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"mat = scipy.io.loadmat('Digit-Five/mnistm_with_label.mat')\n",
|
| 78 |
+
"data = np.transpose((np.array((tf.convert_to_tensor(mat['train']))).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2)) \n",
|
| 79 |
+
"target = np.argmax((mat['label_train']), axis = 1)\n",
|
| 80 |
+
"c2_mm =[data, target]\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"mat = scipy.io.loadmat('Digit-Five/usps_28x28.mat')\n",
|
| 83 |
+
"data = np.transpose((np.array((tf.image.grayscale_to_rgb(tf.convert_to_tensor(mat['dataset'][0][0].reshape(-1,28,28,1))))).astype('float32')).reshape(-1,28,28,3), (0,3,1,2))\n",
|
| 84 |
+
"target = mat['dataset'][0][1].flatten()\n",
|
| 85 |
+
"c3_up = [data, target]\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"mat = scipy.io.loadmat('Digit-Five/svhn_train_32x32.mat')\n",
|
| 88 |
+
"data = np.transpose((np.array((tf.image.resize(np.moveaxis(mat['X'], -1, 0), [28,28]) )).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2))\n",
|
| 89 |
+
"target = (mat['y']-1).flatten()\n",
|
| 90 |
+
"c4_sv = [data, target]\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"mat = scipy.io.loadmat('Digit-Five/syn_number.mat')\n",
|
| 93 |
+
"data = np.transpose((np.array((tf.image.resize(mat['train_data'], [28,28]) )).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2)) \n",
|
| 94 |
+
"target = mat['train_label'].flatten()\n",
|
| 95 |
+
"c5_sy = [data, target]"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": null,
|
| 101 |
+
"metadata": {
|
| 102 |
+
"id": "6uECrd2eBh1V"
|
| 103 |
+
},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"c1 = dataprocess(c1_mt[0], c1_mt[1])\n",
|
| 107 |
+
"c2 = dataprocess(c2_mm[0], c2_mm[1])\n",
|
| 108 |
+
"c3 = dataprocess(c3_up[0], c3_up[1])\n",
|
| 109 |
+
"c4 = dataprocess(c4_sv[0], c4_sv[1])\n",
|
| 110 |
+
"c5 = dataprocess(c5_sy[0], c5_sy[1])\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"data_all = [c1_mt[0],c2_mm[0], c3_up[0], c4_sv[0], c5_sy[0]]"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "markdown",
|
| 117 |
+
"metadata": {
|
| 118 |
+
"id": "Th2GBdjoBh1X"
|
| 119 |
+
},
|
| 120 |
+
"source": [
|
| 121 |
+
"## 3. Define the MK-MMD loss (guassian kernel)"
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "code",
|
| 126 |
+
"execution_count": null,
|
| 127 |
+
"metadata": {
|
| 128 |
+
"id": "gjz5bZS0Bh1X"
|
| 129 |
+
},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"class MMD_loss(nn.Module):\n",
|
| 133 |
+
" def __init__(self, kernel_mul = 2.0, kernel_num = 5):\n",
|
| 134 |
+
" super(MMD_loss, self).__init__()\n",
|
| 135 |
+
" self.kernel_num = kernel_num\n",
|
| 136 |
+
" self.kernel_mul = kernel_mul\n",
|
| 137 |
+
" self.fix_sigma = None\n",
|
| 138 |
+
" return\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" def guassian_kernel(self, source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):\n",
|
| 141 |
+
" n_samples = int(source.size()[0])+int(target.size()[0])\n",
|
| 142 |
+
" total = torch.cat([source, target], dim=0)\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))\n",
|
| 145 |
+
" total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))\n",
|
| 146 |
+
" L2_distance = ((total0-total1)**2).sum(2) \n",
|
| 147 |
+
" if fix_sigma:\n",
|
| 148 |
+
" bandwidth = fix_sigma\n",
|
| 149 |
+
" else:\n",
|
| 150 |
+
" bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)\n",
|
| 151 |
+
" bandwidth /= kernel_mul ** (kernel_num // 2)\n",
|
| 152 |
+
" bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]\n",
|
| 153 |
+
" kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]\n",
|
| 154 |
+
" return sum(kernel_val)\n",
|
| 155 |
+
"\n",
|
| 156 |
+
" def forward(self, source, target):\n",
|
| 157 |
+
" batch_size = int(source.size()[0])\n",
|
| 158 |
+
" kernels = self.guassian_kernel(source, target, kernel_mul=self.kernel_mul, kernel_num=self.kernel_num, fix_sigma=self.fix_sigma)\n",
|
| 159 |
+
" XX = kernels[:batch_size, :batch_size]\n",
|
| 160 |
+
" YY = kernels[batch_size:, batch_size:]\n",
|
| 161 |
+
" XY = kernels[:batch_size, batch_size:]\n",
|
| 162 |
+
" YX = kernels[batch_size:, :batch_size]\n",
|
| 163 |
+
" loss = torch.mean(XX + YY - XY -YX)\n",
|
| 164 |
+
" return loss"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "markdown",
|
| 169 |
+
"metadata": {
|
| 170 |
+
"id": "bw4hooRKBh1Y"
|
| 171 |
+
},
|
| 172 |
+
"source": [
|
| 173 |
+
"## 4. Define the model architecture following the Reverse Layer"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"execution_count": null,
|
| 179 |
+
"metadata": {
|
| 180 |
+
"id": "_dH5urjaBh1Y"
|
| 181 |
+
},
|
| 182 |
+
"outputs": [],
|
| 183 |
+
"source": [
|
| 184 |
+
"class ReverseLayerF(Function):\n",
|
| 185 |
+
"\n",
|
| 186 |
+
" @staticmethod\n",
|
| 187 |
+
" def forward(ctx, x, alpha):\n",
|
| 188 |
+
" ctx.alpha = alpha\n",
|
| 189 |
+
"\n",
|
| 190 |
+
" return x.view_as(x)\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" @staticmethod\n",
|
| 193 |
+
" def backward(ctx, grad_output):\n",
|
| 194 |
+
" output = grad_output.neg() * ctx.alpha\n",
|
| 195 |
+
"\n",
|
| 196 |
+
" return output, None\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"class CNNModel(nn.Module):\n",
|
| 199 |
+
"\n",
|
| 200 |
+
" def __init__(self):\n",
|
| 201 |
+
" super(CNNModel, self).__init__()\n",
|
| 202 |
+
" self.feature = nn.Sequential()\n",
|
| 203 |
+
" self.feature.add_module('f_conv1', nn.Conv2d(3, 64, kernel_size=5))\n",
|
| 204 |
+
" self.feature.add_module('f_bn1', nn.BatchNorm2d(64))\n",
|
| 205 |
+
" self.feature.add_module('f_pool1', nn.MaxPool2d(2))\n",
|
| 206 |
+
" self.feature.add_module('f_relu1', nn.ReLU(True))\n",
|
| 207 |
+
" self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5))\n",
|
| 208 |
+
" self.feature.add_module('f_bn2', nn.BatchNorm2d(50))\n",
|
| 209 |
+
" self.feature.add_module('f_drop1', nn.Dropout2d())\n",
|
| 210 |
+
" self.feature.add_module('f_pool2', nn.MaxPool2d(2))\n",
|
| 211 |
+
" self.feature.add_module('f_relu2', nn.ReLU(True))\n",
|
| 212 |
+
" \n",
|
| 213 |
+
" self.class_classifier = nn.Sequential()\n",
|
| 214 |
+
" self.class_classifier.add_module('c_fc1', nn.Linear(50 * 4 * 4, 100))\n",
|
| 215 |
+
" self.class_classifier.add_module('c_bn1', nn.BatchNorm1d(100))\n",
|
| 216 |
+
" self.class_classifier.add_module('c_relu1', nn.ReLU(True))\n",
|
| 217 |
+
" self.class_classifier.add_module('c_fc3', nn.Linear(100, 10))\n",
|
| 218 |
+
" self.class_classifier.add_module('c_softmax', nn.LogSoftmax())\n",
|
| 219 |
+
" \n",
|
| 220 |
+
" self.domain_classifier = nn.Sequential()\n",
|
| 221 |
+
" self.domain_classifier.add_module('d_fc1', nn.Linear(50 * 4 * 4, 100))\n",
|
| 222 |
+
" self.domain_classifier.add_module('d_bn1', nn.BatchNorm1d(100))\n",
|
| 223 |
+
" self.domain_classifier.add_module('d_relu1', nn.ReLU(True))\n",
|
| 224 |
+
" self.domain_classifier.add_module('d_fc2', nn.Linear(100, 2))\n",
|
| 225 |
+
" self.domain_classifier.add_module('d_softmax', nn.LogSoftmax(dim=1))\n",
|
| 226 |
+
"\n",
|
| 227 |
+
" def forward(self, input_data, alpha):\n",
|
| 228 |
+
" input_data = input_data.expand(input_data.data.shape[0], 3, 28, 28)\n",
|
| 229 |
+
" feature = self.feature(input_data)\n",
|
| 230 |
+
" feature = feature.view(-1, 50 * 4 * 4)\n",
|
| 231 |
+
" reverse_feature = ReverseLayerF.apply(feature, alpha)\n",
|
| 232 |
+
" class_output = self.class_classifier(feature)\n",
|
| 233 |
+
" domain_output = self.domain_classifier(reverse_feature)\n",
|
| 234 |
+
"\n",
|
| 235 |
+
" return class_output, domain_output"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "markdown",
|
| 240 |
+
"metadata": {
|
| 241 |
+
"id": "YAZ2eOkbBh1Y"
|
| 242 |
+
},
|
| 243 |
+
"source": [
|
| 244 |
+
"## 5. Federated Knowledge Alignment (FedKA) "
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": null,
|
| 250 |
+
"metadata": {
|
| 251 |
+
"id": "Su0klLOiBh1Z",
|
| 252 |
+
"scrolled": true
|
| 253 |
+
},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"from tqdm import notebook\n",
|
| 257 |
+
"\n",
|
| 258 |
+
"def run(method, voting):\n",
|
| 259 |
+
" learned_models = []\n",
|
| 260 |
+
" global_net = CNNModel()\n",
|
| 261 |
+
" global_optimizer = optim.Adam(global_net.parameters(), lr=lr) \n",
|
| 262 |
+
" clients = []\n",
|
| 263 |
+
" optims = []\n",
|
| 264 |
+
" client_num = 4\n",
|
| 265 |
+
" for n in range(client_num):\n",
|
| 266 |
+
" local_net = CNNModel()\n",
|
| 267 |
+
" local_optimizer = optim.Adam(local_net.parameters(), lr=lr) \n",
|
| 268 |
+
" clients.append(local_net)\n",
|
| 269 |
+
" optims.append(local_optimizer)\n",
|
| 270 |
+
"\n",
|
| 271 |
+
" loss_class = torch.nn.NLLLoss()\n",
|
| 272 |
+
" loss_domain = torch.nn.NLLLoss()\n",
|
| 273 |
+
" loss_class = loss_class.cuda()\n",
|
| 274 |
+
" loss_domain = loss_domain.cuda()\n",
|
| 275 |
+
" loss_mmd = MMD_loss() \n",
|
| 276 |
+
" \n",
|
| 277 |
+
" acc_list = []\n",
|
| 278 |
+
" for epoch in notebook.tqdm(range(n_epoch)):\n",
|
| 279 |
+
" print(f\"===========Round {epoch} ===========\")\n",
|
| 280 |
+
" if cuda:\n",
|
| 281 |
+
" global_net =global_net.cuda()\n",
|
| 282 |
+
"\n",
|
| 283 |
+
" data_target_iter = iter(cloud_dataset[0]) \n",
|
| 284 |
+
" loss_epoch = []\n",
|
| 285 |
+
" \n",
|
| 286 |
+
" acc = []\n",
|
| 287 |
+
" for n in range(client_num):\n",
|
| 288 |
+
" # Enumerating batches from the dataloader provides a random selection of 512 samples every round.\n",
|
| 289 |
+
" for i, (s_img, s_label) in enumerate(clients_datasets[n]): \n",
|
| 290 |
+
" len_dataloader = 32\n",
|
| 291 |
+
" if i > 31: \n",
|
| 292 |
+
" break\n",
|
| 293 |
+
"\n",
|
| 294 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
| 295 |
+
" alpha = 2. / (1. + np.exp(-5 * p)) - 1\n",
|
| 296 |
+
"\n",
|
| 297 |
+
" optims[n].zero_grad()\n",
|
| 298 |
+
" batch_size = len(s_label)\n",
|
| 299 |
+
"\n",
|
| 300 |
+
" input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)\n",
|
| 301 |
+
" class_label = torch.LongTensor(batch_size)\n",
|
| 302 |
+
" domain_label = torch.zeros(batch_size)\n",
|
| 303 |
+
" domain_label = domain_label.long()\n",
|
| 304 |
+
"\n",
|
| 305 |
+
" if cuda:\n",
|
| 306 |
+
" clients[n] = clients[n].cuda()\n",
|
| 307 |
+
" s_img = s_img.cuda()\n",
|
| 308 |
+
" s_label = s_label.cuda()\n",
|
| 309 |
+
" input_img = input_img.cuda()\n",
|
| 310 |
+
" class_label = class_label.cuda()\n",
|
| 311 |
+
" domain_label = domain_label.cuda()\n",
|
| 312 |
+
"\n",
|
| 313 |
+
" input_img.resize_as_(s_img).copy_(s_img)\n",
|
| 314 |
+
" class_label.resize_as_(s_label).copy_(s_label)\n",
|
| 315 |
+
" class_output, domain_output = clients[n](input_data=input_img, alpha=alpha)\n",
|
| 316 |
+
"\n",
|
| 317 |
+
" err_s_label = loss_class(class_output, class_label)\n",
|
| 318 |
+
" err_s_domain = loss_domain(domain_output, domain_label)\n",
|
| 319 |
+
"\n",
|
| 320 |
+
" t_img, _ = data_target_iter.next()\n",
|
| 321 |
+
" batch_size = len(t_img)\n",
|
| 322 |
+
" input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)\n",
|
| 323 |
+
" domain_label = torch.ones(batch_size)\n",
|
| 324 |
+
" domain_label = domain_label.long()\n",
|
| 325 |
+
"\n",
|
| 326 |
+
" if cuda:\n",
|
| 327 |
+
" t_img = t_img.cuda()\n",
|
| 328 |
+
" input_img = input_img.cuda()\n",
|
| 329 |
+
" domain_label = domain_label.cuda()\n",
|
| 330 |
+
"\n",
|
| 331 |
+
" input_img.resize_as_(t_img).copy_(t_img)\n",
|
| 332 |
+
"\n",
|
| 333 |
+
" _, domain_output = clients[n](input_data=input_img, alpha=alpha)\n",
|
| 334 |
+
" err_t_domain = loss_domain(domain_output, domain_label)\n",
|
| 335 |
+
"\n",
|
| 336 |
+
" if method == 0 or method == 3:\n",
|
| 337 |
+
" err = err_s_label\n",
|
| 338 |
+
" else:\n",
|
| 339 |
+
" err = err_s_label + err_s_domain + err_t_domain\n",
|
| 340 |
+
"\n",
|
| 341 |
+
" err.backward()\n",
|
| 342 |
+
" optims[n].step()\n",
|
| 343 |
+
" \n",
|
| 344 |
+
" # mmd loss\n",
|
| 345 |
+
" mmd_loss_total = 0\n",
|
| 346 |
+
" for i, (s_img, s_label) in enumerate(clients_datasets[n]): \n",
|
| 347 |
+
" len_dataloader = 32\n",
|
| 348 |
+
" if i > 31: \n",
|
| 349 |
+
" break\n",
|
| 350 |
+
"\n",
|
| 351 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
| 352 |
+
" alpha = 2. / (1. + np.exp(-5* p)) - 1\n",
|
| 353 |
+
" batch_size = len(s_label)\n",
|
| 354 |
+
" t_img, _ = data_target_iter.next()\n",
|
| 355 |
+
" s_img = s_img.cuda()\n",
|
| 356 |
+
" t_img = t_img.cuda()\n",
|
| 357 |
+
"\n",
|
| 358 |
+
" hidden_c = clients[n].feature(s_img).reshape(batch_size, -1)\n",
|
| 359 |
+
" hidden_avg = global_net.feature(t_img).reshape(batch_size, -1)\n",
|
| 360 |
+
" mmd_loss = loss_mmd(hidden_c, hidden_avg)\n",
|
| 361 |
+
" mmd_loss_total =+mmd_loss*alpha\n",
|
| 362 |
+
" \n",
|
| 363 |
+
" if method == 2 or method == 3:\n",
|
| 364 |
+
" if (i+1) % 8 == 0:\n",
|
| 365 |
+
" optims[n].zero_grad()\n",
|
| 366 |
+
" err_mmd = mmd_loss_total/8\n",
|
| 367 |
+
" err_mmd.backward()\n",
|
| 368 |
+
" optims[n].step()\n",
|
| 369 |
+
" mmd_loss_total = 0 \n",
|
| 370 |
+
" \n",
|
| 371 |
+
" # FedAvg\n",
|
| 372 |
+
" global_sd = global_net.state_dict()\n",
|
| 373 |
+
" for key in global_sd:\n",
|
| 374 |
+
" global_sd[key] = torch.sum(torch.stack([model.state_dict()[key] for m, model in enumerate(clients)]), axis = 0)/client_num\n",
|
| 375 |
+
" # update the global model\n",
|
| 376 |
+
" global_net.load_state_dict(global_sd) \n",
|
| 377 |
+
" \n",
|
| 378 |
+
" \n",
|
| 379 |
+
" if voting:\n",
|
| 380 |
+
" total = 0\n",
|
| 381 |
+
" num_correct = 0\n",
|
| 382 |
+
" for i, (images, labels) in enumerate(cloud_dataset[0]):\n",
|
| 383 |
+
" len_dataloader = 128\n",
|
| 384 |
+
" if i > 127: \n",
|
| 385 |
+
" break\n",
|
| 386 |
+
"\n",
|
| 387 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
| 388 |
+
" alpha = 2. / (1. + np.exp(-5* p)) - 1\n",
|
| 389 |
+
"\n",
|
| 390 |
+
" images =images.cuda()\n",
|
| 391 |
+
" labels = labels.cuda()\n",
|
| 392 |
+
" global_optimizer.zero_grad()\n",
|
| 393 |
+
" class_output, _ = global_net(images, 0)\n",
|
| 394 |
+
"\n",
|
| 395 |
+
" votes = []\n",
|
| 396 |
+
" for n in range(client_num):\n",
|
| 397 |
+
" clients[n] = clients[n].cuda()\n",
|
| 398 |
+
" output,_ = clients[n](images, 0)\n",
|
| 399 |
+
" pred = torch.argmax(output, 1)\n",
|
| 400 |
+
" votes.append(pred)\n",
|
| 401 |
+
"\n",
|
| 402 |
+
" class_label = torch.Tensor([int(max(set(batch), key = batch.count).cpu().data.numpy()) for batch in [list(i) for i in zip(*votes)]]).to(torch.int64)\n",
|
| 403 |
+
" class_label = class_label.cuda()\n",
|
| 404 |
+
"\n",
|
| 405 |
+
" total += labels.size(0)\n",
|
| 406 |
+
" num_correct += (class_label == labels).sum().item()\n",
|
| 407 |
+
"\n",
|
| 408 |
+
" err = loss_class(class_output, class_label)*alpha\n",
|
| 409 |
+
" err.backward()\n",
|
| 410 |
+
" global_optimizer.step()\n",
|
| 411 |
+
" \n",
|
| 412 |
+
" print(f'Voting accuracy: {num_correct * 100 / total}% Adoption rate: {alpha*100}%')\n",
|
| 413 |
+
" \n",
|
| 414 |
+
" \n",
|
| 415 |
+
" # Evaluation every round \n",
|
| 416 |
+
" # Target task \n",
|
| 417 |
+
" with torch.no_grad():\n",
|
| 418 |
+
" num_correct = 0\n",
|
| 419 |
+
" total = 0\n",
|
| 420 |
+
"\n",
|
| 421 |
+
" for i, (images, labels) in enumerate(cloud_dataset[0]):\n",
|
| 422 |
+
" if i > 312:\n",
|
| 423 |
+
" break\n",
|
| 424 |
+
" \n",
|
| 425 |
+
" if cuda:\n",
|
| 426 |
+
" global_net = global_net.cuda()\n",
|
| 427 |
+
" images =images.cuda()\n",
|
| 428 |
+
" labels = labels.cuda()\n",
|
| 429 |
+
" \n",
|
| 430 |
+
" output,_ = global_net(images, 0)\n",
|
| 431 |
+
" pred = torch.argmax(output, 1)\n",
|
| 432 |
+
" total += labels.size(0)\n",
|
| 433 |
+
" num_correct += (pred == labels).sum().item()\n",
|
| 434 |
+
" \n",
|
| 435 |
+
" print(f'Global: Accuracy of the model on {total} test images: {num_correct * 100 / total}% \\n')\n",
|
| 436 |
+
" acc.append(num_correct * 100 / total)\n",
|
| 437 |
+
" \n",
|
| 438 |
+
" acc_list.append(acc)\n",
|
| 439 |
+
"\n",
|
| 440 |
+
" for n in range(client_num):\n",
|
| 441 |
+
" clients[n].load_state_dict(global_sd)\n",
|
| 442 |
+
"\n",
|
| 443 |
+
" return acc_list"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "markdown",
|
| 448 |
+
"metadata": {
|
| 449 |
+
"id": "aS8nJ2sdBh1a"
|
| 450 |
+
},
|
| 451 |
+
"source": [
|
| 452 |
+
"## 6. Run experiments\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"### Method 0: Source Only\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"### Method 1: $f$-DANN\n",
|
| 457 |
+
"\n",
|
| 458 |
+
"### Method 2: FedKA"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"cell_type": "code",
|
| 463 |
+
"execution_count": null,
|
| 464 |
+
"metadata": {
|
| 465 |
+
"id": "eeqIdMAXBh1b",
|
| 466 |
+
"outputId": "38dd4827-bd80-4f6d-9112-82dda29ab28c"
|
| 467 |
+
},
|
| 468 |
+
"outputs": [],
|
| 469 |
+
"source": [
|
| 470 |
+
"import matplotlib.pyplot as plt\n",
|
| 471 |
+
"\n",
|
| 472 |
+
"methods = [2]\n",
|
| 473 |
+
"voting = True\n",
|
| 474 |
+
"\n",
|
| 475 |
+
"# run 5 tasks\n",
|
| 476 |
+
"for t in range(5):\n",
|
| 477 |
+
" acc = []\n",
|
| 478 |
+
" clients_datasets = [c1, c2, c3, c4, c5]\n",
|
| 479 |
+
" cloud_dataset = [clients_datasets.pop(t)]\n",
|
| 480 |
+
" target = f\"c{t+1}\"\n",
|
| 481 |
+
"\n",
|
| 482 |
+
" # use three seeds\n",
|
| 483 |
+
" for s in range(3):\n",
|
| 484 |
+
" torch.manual_seed(s)\n",
|
| 485 |
+
" random.seed(s)\n",
|
| 486 |
+
" np.random.seed(s)\n",
|
| 487 |
+
" \n",
|
| 488 |
+
" acc_m = []\n",
|
| 489 |
+
" for method in methods:\n",
|
| 490 |
+
"\n",
|
| 491 |
+
" print(f\"Task: c{t+1} Seed: {s} Method: {method}\")\n",
|
| 492 |
+
"\n",
|
| 493 |
+
" evl = run(method, voting)\n",
|
| 494 |
+
" \n",
|
| 495 |
+
" result = np.array((evl)).T\n",
|
| 496 |
+
" plt.plot(result[0], label = \"Global\", color = 'C4')\n",
|
| 497 |
+
" plt.legend()\n",
|
| 498 |
+
" plt.show()\n",
|
| 499 |
+
"\n",
|
| 500 |
+
" acc_m.append(max(np.array((evl))[:,0]))\n",
|
| 501 |
+
" acc.append(acc_m)\n",
|
| 502 |
+
" \n",
|
| 503 |
+
" print(f'Task: c{t+1} Mean: {np.mean((np.array((acc)).T), axis =1)}')\n",
|
| 504 |
+
" print(f'Task: c{t+1} Std: {np.std((np.array((acc)).T), axis =1)}')"
|
| 505 |
+
]
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"cell_type": "code",
|
| 509 |
+
"execution_count": null,
|
| 510 |
+
"metadata": {},
|
| 511 |
+
"outputs": [],
|
| 512 |
+
"source": []
|
| 513 |
+
}
|
| 514 |
+
],
|
| 515 |
+
"metadata": {
|
| 516 |
+
"colab": {
|
| 517 |
+
"name": "proposal.ipynb",
|
| 518 |
+
"provenance": []
|
| 519 |
+
},
|
| 520 |
+
"kernelspec": {
|
| 521 |
+
"display_name": "Python 3 (ipykernel)",
|
| 522 |
+
"language": "python",
|
| 523 |
+
"name": "python3"
|
| 524 |
+
},
|
| 525 |
+
"language_info": {
|
| 526 |
+
"codemirror_mode": {
|
| 527 |
+
"name": "ipython",
|
| 528 |
+
"version": 3
|
| 529 |
+
},
|
| 530 |
+
"file_extension": ".py",
|
| 531 |
+
"mimetype": "text/x-python",
|
| 532 |
+
"name": "python",
|
| 533 |
+
"nbconvert_exporter": "python",
|
| 534 |
+
"pygments_lexer": "ipython3",
|
| 535 |
+
"version": "3.7.11"
|
| 536 |
+
}
|
| 537 |
+
},
|
| 538 |
+
"nbformat": 4,
|
| 539 |
+
"nbformat_minor": 1
|
| 540 |
+
}
|