llava-glu30-heads30
This is a pruned version of LLaVA-1.5-7b.
Pruning Details
- Method: GLU Pruning
- Sparsity: Unknown
This model was pruned to improve efficiency while maintaining performance.
Usage
Since this model was pruned structurally, the architecture remains compatible with the standard LlavaForConditionalGeneration class. However, you should use the processor from the base model to ensure correct input preprocessing.
from transformers import AutoProcessor, LlavaForConditionalGeneration
import torch
model_id = "CrystalRaindropsFall/llava-glu30-heads30"
base_model_id = "llava-hf/llava-1.5-7b-hf"
# 1. Load the processor from the base model
processor = AutoProcessor.from_pretrained(base_model_id)
# 2. Load the pruned model
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Example inference
from PIL import Image
import requests
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_logo.png?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nWhat is shown in this image?\nASSISTANT:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, model.dtype)
output = model.generate(**inputs, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0], skip_special_tokens=True))
- Downloads last month
- 20
Model tree for CrystalRaindropsFall/llava-glu30-heads30
Base model
llava-hf/llava-1.5-7b-hf