πŸ€– ViT Emotion Classifier

This is a lightweight Vision Transformer (ViT) model fine-tuned to classify emotions from facial images using a custom dataset of school-aged individuals. It supports 8 emotional categories and is designed to work well on small datasets and limited compute.


🧠 Supported Emotions

The model predicts one of the following emotional states:

Label ID Emotion
0 anxious-fearful
1 bored
2 confused
3 discouraged
4 frustrated
5 neutral
6 positive
7 suprised

πŸ“¦ Model Details

  • Model Type: ViTForImageClassification
  • Backbone: vit-small-patch16-224
  • Dataset: Dc-4nderson/feelings_classfication_dataset
  • Framework: PyTorch
  • Labels: 8 emotions (defined in config.json)
  • Trained on: Google Colab with < 600 images

πŸ§ͺ Usage

from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch

# Load model + processor
processor = AutoImageProcessor.from_pretrained("Dc-4nderson/vit-emotion-classifier")
model = AutoModelForImageClassification.from_pretrained("Dc-4nderson/vit-emotion-classifier")

# Load image and preprocess
image = Image.open("your_image.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")

# Run inference
with torch.no_grad():
    outputs = model(**inputs)
    pred = torch.argmax(outputs.logits, dim=1).item()
    label = model.config.id2label[str(pred)]

print("🧠 Predicted Emotion:", label)
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Dc-4nderson/vit-emotion-classifier

Finetuned
(2462)
this model

Dataset used to train Dc-4nderson/vit-emotion-classifier

Space using Dc-4nderson/vit-emotion-classifier 1