VoiceAPI-Models / README.md
Harshil748's picture
Update README.md
487d8fc verified
---
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
license: mit
title: VoiceAPI
tags:
- tts
- text-to-speech
- indian-languages
- vits
- multilingual
- speech-synthesis
language:
- hi
- bn
- mr
- te
- kn
- en
- bho
- mai
- mag
- hne
- gu
---
# 🎙️ VoiceAPI - Multi-lingual Indian Language TTS
An advanced **multi-speaker, multilingual text-to-speech (TTS) synthesizer** supporting 11 Indian languages with 21 voice options.
## 🌟 Features
- **11 Indian Languages**: Hindi, Bengali, Marathi, Telugu, Kannada, Gujarati, Bhojpuri, Chhattisgarhi, Maithili, Magahi, English
- **21 Voice Options**: Male and female voices for each language
- **High-Quality Audio**: 22050 Hz sample rate, natural prosody
- **REST API**: Simple GET/POST endpoints for easy integration
- **Real-time Synthesis**: Fast inference on CPU/GPU
## 🗣️ Supported Languages
| Language | Code | Female | Male | Script |
|----------|------|--------|------|--------|
| Hindi | hi | ✅ | ✅ | देवनागरी |
| Bengali | bn | ✅ | ✅ | বাংলা |
| Marathi | mr | ✅ | ✅ | देवनागरी |
| Telugu | te | ✅ | ✅ | తెలుగు |
| Kannada | kn | ✅ | ✅ | ಕನ್ನಡ |
| Gujarati | gu | ✅ (MMS) | - | ગુજરાતી |
| Bhojpuri | bho | ✅ | ✅ | देवनागरी |
| Chhattisgarhi | hne | ✅ | ✅ | देवनागरी |
| Maithili | mai | ✅ | ✅ | देवनागरी |
| Magahi | mag | ✅ | ✅ | देवनागरी |
| English | en | ✅ | ✅ | Latin |
## 📡 API Usage
### Endpoint
\`\`\`
[https://harshil748-voiceapi.hf.space/](https://harshil748-voiceapi.hf.space/)
\`\`\`
### Parameters
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| \`text\` | string | Yes | Text to synthesize (lowercase for English) |
| \`lang\` | string | Yes | Language name (hindi, bengali, etc.) |
| \`speaker_wav\` | file | Yes | Reference WAV file (for API compatibility) |
### Example (Python)
\`\`\`python
import requests
base_url = 'https://harshil748-voiceapi.hf.space/Get_Inference'
WavPath = 'reference.wav'
params = {
'text': 'नमस्ते, आप कैसे हैं?',
'lang': 'hindi',
}
with open(WavPath, "rb") as AudioFile:
response = requests.get(base_url, params=params, files={'speaker_wav': AudioFile.read()})
if response.status_code == 200:
with open('output.wav', 'wb') as f:
f.write(response.content)
print("Audio saved as 'output.wav'")
\`\`\`
### Example (cURL)
\`\`\`bash
curl -X POST "https://harshil748-voiceapi.hf.space/Get_Inference?text=hello&lang=english" \\
-F "speaker_wav=@reference.wav" \\
-o output.wav
\`\`\`
## 🏗️ Model Architecture
- **Base Model**: VITS (Variational Inference with adversarial learning for Text-to-Speech)
- **Encoder**: Transformer-based text encoder (6 layers, 192 hidden channels)
- **Decoder**: HiFi-GAN neural vocoder
- **Duration Predictor**: Stochastic duration predictor for natural prosody
- **Sample Rate**: 22050 Hz (16000 Hz for Gujarati MMS)
## 📊 Training
### Datasets Used
| Dataset | Languages | Source | License |
|---------|-----------|--------|---------|
| OpenSLR-103 | Hindi | [OpenSLR](https://www.openslr.org/103/) | CC BY 4.0 |
| OpenSLR-37 | Bengali | [OpenSLR](https://www.openslr.org/37/) | CC BY 4.0 |
| OpenSLR-64 | Marathi | [OpenSLR](https://www.openslr.org/64/) | CC BY 4.0 |
| OpenSLR-66 | Telugu | [OpenSLR](https://www.openslr.org/66/) | CC BY 4.0 |
| OpenSLR-79 | Kannada | [OpenSLR](https://www.openslr.org/79/) | CC BY 4.0 |
| OpenSLR-78 | Gujarati | [OpenSLR](https://www.openslr.org/78/) | CC BY 4.0 |
| Common Voice | Hindi, Bengali | [Mozilla](https://commonvoice.mozilla.org/) | CC0 |
| IndicTTS | Multiple | [IIT Madras](https://www.iitm.ac.in/donlab/tts/) | Research |
| Indic-Voices | Multiple | [AI4Bharat](https://ai4bharat.iitm.ac.in/indic-voices/) | CC BY 4.0 |
### Training Configuration
- **Epochs**: 1000
- **Batch Size**: 32
- **Learning Rate**: 2e-4
- **Optimizer**: AdamW
- **FP16 Training**: Enabled
- **Hardware**: NVIDIA V100/A100 GPUs
See \`training/\` directory for full training scripts and configurations.
## 🚀 Deployment
This API is deployed on HuggingFace Spaces using Docker:
\`\`\`dockerfile
FROM python:3.10-slim
# ... installs dependencies
# Downloads models from Harshil748/VoiceAPI-Models
# Runs FastAPI server on port 7860
\`\`\`
Models are hosted separately at [Harshil748/VoiceAPI-Models](https://huggingface.co/Harshil748/VoiceAPI-Models) (~8GB).
## 📁 Project Structure
\`\`\`
VoiceAPI/
├── app.py # HuggingFace Spaces entry point
├── Dockerfile # Docker configuration
├── requirements.txt # Python dependencies
├── download_models.py # Model downloader
├── src/
│ ├── api.py # FastAPI REST server
│ ├── engine.py # TTS inference engine
│ ├── config.py # Voice configurations
│ └── tokenizer.py # Text tokenization
└── training/
├── train_vits.py # VITS training script
├── prepare_dataset.py # Data preparation
├── export_model.py # Model export
├── datasets.csv # Dataset links
└── configs/ # Training configs
\`\`\`
## 📜 License
- **Code**: MIT License
- **Models**: CC BY 4.0 (following SYSPIN licensing)
- **Datasets**: Individual licenses (see training/datasets.csv)
## 🙏 Acknowledgments
- [SYSPIN IISc SPIRE Lab](https://syspin.iisc.ac.in/) for pre-trained VITS models
- [Facebook MMS](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) for Gujarati TTS
- [Coqui TTS](https://github.com/coqui-ai/TTS) for the TTS library
- [AI4Bharat](https://ai4bharat.iitm.ac.in/) for Indian language resources
## 📧 Contact
Built for the **Voice Tech for All** Hackathon - Multi-lingual TTS for healthcare assistants serving low-income communities.