οΌœγ€θͺ²ι‘Œγ€‘ここはθ‡ͺεˆ†γ§θ¨˜ε…₯γ—γ¦δΈ‹γ•γ„οΌž

This repository provides a LoRA adapter fine-tuned from Qwen/Qwen3-4B-Instruct-2507 using LoRA + Unsloth.

This repository contains LoRA adapter weights only. The base model must be loaded separately.

Training Objective

This adapter is trained to improve multi-turn agent task performance on ALFWorld (household tasks) and DBBench (database operations).

Loss is applied to all assistant turns in the multi-turn trajectory, enabling the model to learn environment observation, action selection, tool use, and recovery from errors.

Training Configuration

  • Base model: Qwen/Qwen3-4B-Instruct-2507
  • Method: LoRA (full precision base)
  • Max sequence length: 2048
  • Epochs: 1
  • Learning rate: 1e-06
  • LoRA: r=64, alpha=128

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

base = "Qwen/Qwen3-4B-Instruct-2507"
adapter = "your_id/your-repo"

tokenizer = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(
    base,
    torch_dtype=torch.float16,
    device_map="auto",
)
model = PeftModel.from_pretrained(model, adapter)

Sources & Terms (IMPORTANT)

Training data: u-10bei/sft_alfworld_trajectory_dataset_v5

Dataset License: MIT License. This dataset is used and distributed under the terms of the MIT License. Compliance: Users must comply with the MIT license (including copyright notice) and the base model's original terms of use.

Downloads last month
-
Safetensors
Model size
4B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for JINIAC-2026/test31

Adapter
(1952)
this model