IBLM - GPT2-Small (FineWeb 10B)

A custom GPT model trained on FineWeb 10B dataset.

Model Details

  • Architecture: Custom GPT with value residual connections and lambda mixing
  • Parameters: ~124M (GPT2-small scale)
  • Training Data: FineWeb 10B tokens

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "Ksgk-fy/iblm",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("gpt2")

# Generate text
input_ids = tokenizer("Hello, world", return_tensors="pt").input_ids
with torch.no_grad():
    outputs = model.generate(input_ids, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))

Citation

If you use this model, please cite...

Downloads last month
50
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support