Lemon-03 commited on
Commit
0495a49
·
verified ·
1 Parent(s): f53ae76

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -9
README.md CHANGED
@@ -19,18 +19,11 @@ tags:
19
 
20
  # 🦾 Diffusion Policy for Push-T (200k Steps)
21
 
22
-
23
-
24
  [![LeRobot](https://img.shields.io/badge/Library-LeRobot-yellow)](https://github.com/huggingface/lerobot)
25
-
26
  [![Task](https://img.shields.io/badge/Task-Push--T-blue)](https://huggingface.co/datasets/lerobot/pusht)
27
-
28
  [![UESTC](https://img.shields.io/badge/Author-UESTC_Graduate-red)](https://www.uestc.edu.cn/)
29
-
30
  [![License](https://img.shields.io/badge/License-Apache_2.0-green)](https://www.apache.org/licenses/LICENSE-2.0)
31
 
32
-
33
-
34
  > **Summary:** This model demonstrates the capabilities of **Diffusion Policy** on the precision-demanding **Push-T** task. It was trained using the [LeRobot](https://github.com/huggingface/lerobot) framework as part of a thesis research project benchmarking Imitation Learning algorithms.
35
  - **🧩 Task**: Push-T (Simulated)
36
  - **🧠 Algorithm**: [Diffusion Policy](https://huggingface.co/papers/2303.04137) (DDPM)
@@ -38,8 +31,6 @@ tags:
38
  - **🎓 Author**: Graduate Student, **UESTC** (University of Electronic Science and Technology of China)
39
  ---
40
 
41
-
42
-
43
  ## 🔬 Benchmark Results (vs ACT)
44
 
45
  Compared to the ACT baseline (which achieved **0%** success rate in our controlled experiments), this Diffusion Policy model demonstrates significantly better control precision and trajectory stability.
 
19
 
20
  # 🦾 Diffusion Policy for Push-T (200k Steps)
21
 
 
 
22
  [![LeRobot](https://img.shields.io/badge/Library-LeRobot-yellow)](https://github.com/huggingface/lerobot)
 
23
  [![Task](https://img.shields.io/badge/Task-Push--T-blue)](https://huggingface.co/datasets/lerobot/pusht)
 
24
  [![UESTC](https://img.shields.io/badge/Author-UESTC_Graduate-red)](https://www.uestc.edu.cn/)
 
25
  [![License](https://img.shields.io/badge/License-Apache_2.0-green)](https://www.apache.org/licenses/LICENSE-2.0)
26
 
 
 
27
  > **Summary:** This model demonstrates the capabilities of **Diffusion Policy** on the precision-demanding **Push-T** task. It was trained using the [LeRobot](https://github.com/huggingface/lerobot) framework as part of a thesis research project benchmarking Imitation Learning algorithms.
28
  - **🧩 Task**: Push-T (Simulated)
29
  - **🧠 Algorithm**: [Diffusion Policy](https://huggingface.co/papers/2303.04137) (DDPM)
 
31
  - **🎓 Author**: Graduate Student, **UESTC** (University of Electronic Science and Technology of China)
32
  ---
33
 
 
 
34
  ## 🔬 Benchmark Results (vs ACT)
35
 
36
  Compared to the ACT baseline (which achieved **0%** success rate in our controlled experiments), this Diffusion Policy model demonstrates significantly better control precision and trajectory stability.