AM-Thinking-v1 GGUF Models
Model Generation Details
This model was generated using llama.cpp at commit 92ecdcc0.
Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)
Our latest quantization method introduces precision-adaptive quantization for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on Llama-3-8B. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
Benchmark Context
All tests conducted on Llama-3-8B-Instruct using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
Method
- Dynamic Precision Allocation:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- Critical Component Protection:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
Quantization Performance Comparison (Llama-3-8B)
| Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|---|---|---|---|---|---|---|---|---|
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
Key:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
Key Improvements:
- 🔥 IQ1_M shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 IQ2_S cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ IQ1_S maintains 39.7% better accuracy despite 1-bit quantization
Tradeoffs:
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
When to Use These Models
📌 Fitting models into GPU VRAM
✔ Memory-constrained deployments
✔ Cpu and Edge Devices where 1-2bit errors can be tolerated
✔ Research into ultra-low-bit quantization
Choosing the Right Model Format
Selecting the correct model format depends on your hardware capabilities and memory constraints.
BF16 (Brain Float 16) – Use if BF16 acceleration is available
- A 16-bit floating-point format designed for faster computation while retaining good precision.
- Provides similar dynamic range as FP32 but with lower memory usage.
- Recommended if your hardware supports BF16 acceleration (check your device's specs).
- Ideal for high-performance inference with reduced memory footprint compared to FP32.
📌 Use BF16 if:
✔ Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
✔ You want higher precision while saving memory.
✔ You plan to requantize the model into another format.
📌 Avoid BF16 if:
❌ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.
F16 (Float 16) – More widely supported than BF16
- A 16-bit floating-point high precision but with less of range of values than BF16.
- Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 Use F16 if:
✔ Your hardware supports FP16 but not BF16.
✔ You need a balance between speed, memory usage, and accuracy.
✔ You are running on a GPU or another device optimized for FP16 computations.
📌 Avoid F16 if:
❌ Your device lacks native FP16 support (it may run slower than expected).
❌ You have memory limitations.
Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- Lower-bit models (Q4_K) → Best for minimal memory usage, may have lower precision.
- Higher-bit models (Q6_K, Q8_0) → Better accuracy, requires more memory.
📌 Use Quantized Models if:
✔ You are running inference on a CPU and need an optimized model.
✔ Your device has low VRAM and cannot load full-precision models.
✔ You want to reduce memory footprint while keeping reasonable accuracy.
📌 Avoid Quantized Models if:
❌ You need maximum accuracy (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)
These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.
IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.
- Use case: Best for ultra-low-memory devices where even Q4_K is too large.
- Trade-off: Lower accuracy compared to higher-bit quantizations.
IQ3_S: Small block size for maximum memory efficiency.
- Use case: Best for low-memory devices where IQ3_XS is too aggressive.
IQ3_M: Medium block size for better accuracy than IQ3_S.
- Use case: Suitable for low-memory devices where IQ3_S is too limiting.
Q4_K: 4-bit quantization with block-wise optimization for better accuracy.
- Use case: Best for low-memory devices where Q6_K is too large.
Q4_0: Pure 4-bit quantization, optimized for ARM devices.
- Use case: Best for ARM-based devices or low-memory environments.
Summary Table: Model Format Selection
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|---|---|---|---|---|
| BF16 | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| F16 | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| Q4_K | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| Q6_K | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| Q8_0 | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| IQ3_XS | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| Q4_0 | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
Included Files & Details
AM-Thinking-v1-bf16.gguf
- Model weights preserved in BF16.
- Use this if you want to requantize the model into a different format.
- Best if your device supports BF16 acceleration.
AM-Thinking-v1-f16.gguf
- Model weights stored in F16.
- Use if your device supports FP16, especially if BF16 is not available.
AM-Thinking-v1-bf16-q8_0.gguf
- Output & embeddings remain in BF16.
- All other layers quantized to Q8_0.
- Use if your device supports BF16 and you want a quantized version.
AM-Thinking-v1-f16-q8_0.gguf
- Output & embeddings remain in F16.
- All other layers quantized to Q8_0.
AM-Thinking-v1-q4_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q4_K.
- Good for CPU inference with limited memory.
AM-Thinking-v1-q4_k_s.gguf
- Smallest Q4_K variant, using less memory at the cost of accuracy.
- Best for very low-memory setups.
AM-Thinking-v1-q6_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q6_K .
AM-Thinking-v1-q8_0.gguf
- Fully Q8 quantized model for better accuracy.
- Requires more memory but offers higher precision.
AM-Thinking-v1-iq3_xs.gguf
- IQ3_XS quantization, optimized for extreme memory efficiency.
- Best for ultra-low-memory devices.
AM-Thinking-v1-iq3_m.gguf
- IQ3_M quantization, offering a medium block size for better accuracy.
- Suitable for low-memory devices.
AM-Thinking-v1-q4_0.gguf
- Pure Q4_0 quantization, optimized for ARM devices.
- Best for low-memory environments.
- Prefer IQ4_NL for better accuracy.
🚀 If you find these models useful
❤ Please click "Like" if you find this useful!
Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks:
👉 Quantum Network Monitor
💬 How to test:
Choose an AI assistant type:
TurboLLM(GPT-4o-mini)HugLLM(Hugginface Open-source)TestLLM(Experimental CPU-only)
What I’m Testing
I’m pushing the limits of small open-source models for AI network monitoring, specifically:
- Function calling against live network services
- How small can a model go while still handling:
- Automated Nmap scans
- Quantum-readiness checks
- Network Monitoring tasks
🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads):
- ✅ Zero-configuration setup
- ⏳ 30s load time (slow inference but no API costs)
- 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!
Other Assistants
🟢 TurboLLM – Uses gpt-4o-mini for:
- Create custom cmd processors to run .net code on Quantum Network Monitor Agents
- Real-time network diagnostics and monitoring
- Security Audits
- Penetration testing (Nmap/Metasploit)
🔵 HugLLM – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
💡 Example commands to you could test:
"Give me info on my websites SSL certificate""Check if my server is using quantum safe encyption for communication""Run a comprehensive security audit on my server"- '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.
If you appreciate the work, please consider buying me a coffee ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! 😊
AM‑Thinking‑v1: Advancing the Frontier of Reasoning at 32B Scale
- 2025-05-10 · a-m‑team
🤗 Hugging Face | 📑 Paper | 📑 Blog
🚀 Introduction
We release AM-Thinking‑v1, a 32B dense language model focused on enhancing reasoning capabilities. Built on Qwen 2.5‑32B‑Base, AM-Thinking‑v1 shows strong performance on reasoning benchmarks, comparable to much larger MoE models like DeepSeek‑R1, Qwen3‑235B‑A22B, Seed1.5-Thinking, and larger dense model like Nemotron-Ultra-253B-v1.
🧩 Why Another 32B Reasoning Model Matters?
Large Mixture‑of‑Experts (MoE) models such as DeepSeek‑R1 or Qwen3‑235B‑A22B dominate leaderboards—but they also demand clusters of high‑end GPUs. Many teams just need the best dense model that fits on a single card. AM‑Thinking‑v1 fills that gap while remaining fully based on open-source components:
- Outperforms DeepSeek‑R1 on AIME’24/’25 & LiveCodeBench and approaches Qwen3‑235B‑A22B despite being 1/7‑th the parameter count.
- Built on the publicly available Qwen 2.5‑32B‑Base, as well as the RL training queries.
- Shows that with a well‑designed post‑training pipeline ( SFT + dual‑stage RL ) you can squeeze flagship‑level reasoning out of a 32 B dense model.
- Deploys on one A100‑80 GB with deterministic latency—no MoE routing overhead.
🛠️ Use Cases
1) Code Generation
PROMPT : write a python script for a bouncing red ball within a triangle, make sure to handle collision detection properly. make the triangle slowly rotate. implement it in python. make sure ball stays within the triangle
2) Logic
3) Writing
⚡ Quick start
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "a-m-team/AM-Thinking-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
prompt = "How can I find inner peace?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=49152
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True)
think_content = response.split("<think>")[1].split("</think>")[0]
answer_content = response.split("<answer>")[1].split("</answer>")[0]
print (f"user prompt: {prompt}")
print (f"model thinking: {think_content}")
print (f"model answer: {answer_content}")
Note: We have included the system prompt in the tokenizer configuration, as it was used during both the SFT and RL stages. To ensure consistent output quality, we recommend including the same system prompt during actual usage; otherwise, the model's responses may be significantly affected.
Quantized versions for compact devices
A series of quantized versions for AM-Thinking-v1 model. For use with llama.cpp and Ollama is available at AM-Thinking-v1-gguf.
🔧 Post-training pipeline
To achieve its strong reasoning ability, AM‑Thinking‑v1 goes through a carefully designed post-training pipeline. Below we describe the key stages involved in turning a base model into a high-performing reasoner:
Step 1 – Cold‑start SFT. We begin with the open-sourced Qwen 2.5‑32B‑Base and run a broad supervised fine‑tune on a blended training dataset of math, code and open‑domain chat. This endows the model with a "think‑then‑answer" behavioural pattern and equips it with an initial capacity for reasoning.
Step 2 – Pass‑rate‑aware data curation. Before any RL, the SFT model is evaluated on every math‑ and code‑oriented training query. For each item we log a pass rate; only those with 0 < pass‑rate < 1 are kept. In effect we discard problems the model already masters and those it utterly fails, concentrating learning on genuinely informative cases.
Step 3 – Reinforcement learning . We adopt a two‑stage GRPO scheme: Stage 1 trains only on math and code queries. Once it converges, stage 2 starts by removing every query the model answered 100% correctly in Stage 1 and adjusting key hyper‑parameters such as maximum generation length and learning rate.
⚠️ Limitations
While AM‑Thinking‑v1 excels at pure language reasoning and open‑domain chat, it has not yet been trained for structured function‑calling or tool‑use workflows, which restricts its usefulness in agent‑style applications that must act on external systems. Improving the model's ability to follow complex instructions is also an important direction for our future work. In addition, our safety alignment is still at an early stage, so more rigorous red‑teaming are required to reduce potential harms.
📚 Citation
The a-m-team is an internal team at Beike (Ke.com), dedicated to exploring AGI technology. If you find our work helpful, feel free to give us a cite.
@misc{ji2025amthinkingv1advancingfrontierreasoning,
title={AM-Thinking-v1: Advancing the Frontier of Reasoning at 32B Scale},
author={Yunjie Ji and Xiaoyu Tian and Sitong Zhao and Haotian Wang and Shuaiting Chen and Yiping Peng and Han Zhao and Xiangang Li},
year={2025},
eprint={2505.08311},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.08311},
}
- Downloads last month
- 499
1-bit
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit